SMAP results

on Monday, October 9th, 2017 2:34 | by

These are the results of the SMAP for the TNTxWTB. I also have done a few for the c105;;c232xWTB but there is not much to say. I would say that the cleanest lines show a bigger slope, but prone to subjectiveness.

In addition, I have done some animations of the attractors that I have posted on slack because of size.

Print Friendly, PDF & Email

Droso Kurs and more

on Friday, April 22nd, 2016 6:18 | by


Here I attach the results in a pdf file from the students praktikum with an additional line I tested on my own meanwhile (Gr28bd and TrpA1 drivers together). They seem to work as a really good positive control btw, good for technique optimization.

For the students I tried out two different split drivers, the MB058B, which targets PPL1-a’2a2, and MB301B, which targets PAM-b2b’2. In addition the Gr5a driver, because it targets the “sugar” neurons. From the split drivers I wanted to see if I still get a validation from my initial model. MB301B seems to do quite what my model would predict but MB058B maybe not. Hopefully in a future screen I would be able to test many more and make a much more precise modelling.valences

Print Friendly, PDF & Email

Cumulative bins, starting at zero and normalizing

on Monday, April 4th, 2016 3:04 | by

In the last meeting Björn proposed to do correlations of cumulative increasing bins. He said to do that taking the zeroth point (last library point where prediction is still not done) and use it for having a potential 1 of correlation coefficient at the beginning. I could not do that because I didnt save the zeroth points, and this will be a bit tedious and confusing considering that many flies were tested and probably the order is not 100% known. Thus, I just did the bins skipping this zeroth point. After all, we should see something similar with this one. First two graphs: c105;;c232>TNT (first and second prediction point), second: WTBxTNT, third: WTBxc105;;c232.

c105>TNTcumbinsfirst predCorrelationbothneigh

c105>TNTcumbinssec predCorrelationbothneigh

WTBxTNTTNTxWTBcumbinsfirst predCorrelationbothneighTNTxWTBcumbinssec predCorrelationbothneigh

WTBxc105;;c232.WTBxc105first predCorrelationbothneighWTBxc105sec predCorrelationbothneigh


Examples of how each of the flies look like. So they are basically cumulative bins with each single fly (each in different colour). Just to have a hint how does the singularity looks like.  exampleallfliesb exampleallfliescumbins exampleallfliesr   Second thing I did is normalize the to have a range from -1 to 1 all of them (I have to double check the range in the script) and also setting them at a starting point of zero. I did this because we do not want to have differences in the correlation coefficient due to a different offset of the values of the wing beat and neither because of the starting point (if the fly was already flying to the right full gas, then it could be that it has an influence in the following prediction).

c105;;c232 –> first at starting at zero without normalizing and then with normalizing. The next is just the RMSE (not so important).



Print Friendly, PDF & Email

Prediction with binnning

on Monday, March 21st, 2016 1:13 | by

To see if there is an exponential decay in the prediction of the fly traces we did correlations of bins of 40 data points. We have 4 graphs (the last one merged) which consist of predictions at two different points with two different number of neighbours used for the prediction. So we have for each group sucesively: prediction at the first prediction point with the first number of neigbours, then the same with different number of neighbours. The last two are two different numbers of neighbours for the second prediction point. In the order: c105;;c232>TNT, TNTxWTB, c105;;c232xWTBc105;;c232xTNTfirst predCorrelationfirstneighc105;;c232xTNTfirst predCorrelationsecondneighc105;;c232xTNTsec predCorrelationfirstneighc105;;c232xTNTsec predCorrelationsecondneighTNTxWTBfirst predCorrelationfirstneighTNTxWTBfirst predCorrelationsecondneighTNTxWTBsec predCorrelationfirstneighTNTxWTBsec predCorrelationsecondneighc105;;c232xWTBfirst predCorrelationbothneighc105;;c232xWTBsec predCorrelationbothneigh

Print Friendly, PDF & Email

Nonlinear signature of Drosophila in Strokelitude

on Monday, March 14th, 2016 1:48 | by





This is now the results from trying to predict the fly behavior doing ensembles of two predictions for the next 200 data points at two different points of the traces.


c105xTNT200Correlationdouble c105xTNT200RMSEdouble

WTBxTNT: tntxwtb200Correlationdouble tntxwtb200RMSEdouble

WTBxc105;;c232: wtbxc105200Correlationdouble wtbxc105200RMSEdouble

From what we see here, there is no “flattening” in the prediction of the fly when the neurons under c105 and c232 are targeted by TNT. This is  done with around 14/15 flies for each group with two predictions in each ensemble of the two starting points. That makes a total of 15flies x 3 groups x 2 starting points for prediction x 2 predictions per ensemble = 180 prediction traces. Now I´m trying to calculate it by making correlations of bins in the prediction-observed for the same fly

Print Friendly, PDF & Email

Modelling the T-maze screen



This is the markdown showing the protocol and results of the modelling for the choice in the T-maze. This is for calculating valence. Nevertheless, this needs to be confirmed with the results of more lines, it could be that it is overfitted, I would like to do in addition cross-validation. I´m actually doing crosses and finding new lines to have more lines to test.

Print Friendly, PDF & Email

Fly behavior prediction in the platform

on Monday, February 15th, 2016 2:25 | by

This is the prediction analysis of flies in the platform under a 20min experiment under dark conditions. The number of experiments change drastically among groups because of technical problems: WTBxTNT is 4, WTBxc105;;c232 is 22, for the experimental line is 6 (c105;;c232>TNT), for the platform without flies is 10. I show the root mean squares and the correlation coefficient for each group.


This is the experimental group: c105;;c232>TNT.





The group without flies on the platform. I expect here to get a very good predictability overall:

platformnothingCorrelation platformnothingRMSE


WTBxc105;;c232 groupplatformwtbxc105Correlation platformwtbxc105RMSEWTBxUAS-TNT platformwtbxtntCorrelation platformwtbxtntRMSE


Print Friendly, PDF & Email

First tests of fly prediction under a mean of the flies on single data points

on Monday, February 8th, 2016 12:11 | by

These were done the week before last one but I could not upload it last time, so here are they. These are the results for predicting 4-5 flies of each group. Just one prediction from the middle of the time series for the 40 data points ahead in the future. First group is c105;;c232>TNT.






This is c105;;c232 x WTB

Correlation RMSE


This is UAS-TNT x WTB wtbtntCorrelation wtbtntRMSE


As I saw that the graph had so much zig-zag I told Pablo to make a bigger number of tested flies and this is what he is presenting today.


In addition I did analyze other parameters which are all saved under a PDF file below (Strokelitude). This contains some parameters with doubtfull processing which I still don´t trust so I have to find a better way for the calculation of it.


Print Friendly, PDF & Email

Prediction analysis

on Sunday, January 17th, 2016 7:02 | by


These are just 5 flies (WTBxTNT) from the strokelitude where I measured the correlation coefficient on the Y-axis. In the X-axis, first bin is from 0-2 s of prediction, second is 2-4s and so on.

It seems as if some flies do nicer than others. Although it seems to me that a correlation coefficient from 0.3 isnt a big thing with all this variability. I have to find out the best binning though, I think it needs to be much more in the short term.


When I do the mean of the 5 flies measured, I do see a very slight decay. But once more I would say the decay is from the bin 1 to the second.


Here I tried another way, the RMSE, which according to literature and to my own reasoning should be a better analysis. I think RMSE measures just the differences of the absolute points whereas correlation coefficient is rather if the direction and degree of variation correlates (covariates). I find a very weird result. The fit is bad, the it gets better (but it should be just a chance event because correl coef decreases) and then it get very bad and so on.


I think for the future I have to make ensembles of two k neighbours maybe, which seem to increase the prediction power 10-15%. And maybe not look that much into the future as it was done here (10s).


Here some examples of predictions vs observations:

pred3 pred2 pred1

Print Friendly, PDF & Email

Frequency spectrum for the platform

on Monday, December 14th, 2015 2:35 | by


spectrumohnefly_1b_2r_3gSpectrum with the x axis showing the frequency so that 0.5 is half of the measuring frequency (in this case 20Hz and so it measures until the Nyquist frequency: 10Hz).Here we see the result for the three platforms without any flies. From time to time I hit the table to make some signal in the platforms

exampleFlyPlatform&PlatformAloneTo compare the power of the frequency put together platform with (green and black) and without flies (red).example2FlyPlatformFFT This is the case of three different flies in each platform.examplePlatformFlyFFT

Here the same flies, just in different platforms. There we see that some platforms show stronger signal than other (if I remember well). So is not the fly making the difference. But I have to check. 250HzData.Flyblack&NoflyredMeasuring in this case the 250Hz raw data. In black with a fly and in red without fly

Measuring in this case the 250Hz raw data. This time with and additional fly (green). We can see a characteristic peak at around 60Hz.

Print Friendly, PDF & Email