aPKC/FoxP pathway

on Tuesday, January 7th, 2025 1:18 | by Julia Schulz

  1. Summary protein-protein aPKC interactions flybase results

aPKC: atypical protein kinase C/ Serine/threonine protein kinase

  • function: encodes a member of the conserved Par complex, is required for apico- basal cell polarity in the germ line as well as in epithelial and neural precursor cells, for epithelial planar cell polarity and for cell proliferation.
  • expression pattern:
  • indirect flight muscle ((thoracic dorso-longitudinal muscles (DLM))
  • high in MNs (70% in leg muscle motor neurons)
Protein-protein interactionsourceMN expression level interaction partner/aPKC
aPKC, FBgn0261854(Colosimo et al., 2010)high
aPKC – Cdc42  Leibfried et al., 2013)Intermediate-low
aPKC – Dap160  Chabu and Doe, 2008)intermediate
aPKC – Magi  Padash Barmchi et al., 2016)low
aPKC – Myo10A  Liu et al., 2008)low
aPKC – Patj  Sotillos et al., 2004)low
aPKC – Rap1  Carmena et al., 2011)intermediate
aPKC – Tsp2A  Xu et al., 2019)low
aPKC – Vhl  Duchi et al., 2010)low
aPKC – aurA  Wirtz-Peitz et al., 2008)low
aPKC – baz  Holly et al., 2020Casas-Tintó and Ferrús, 2019Padash Barmchi et al., 2016Goh et al., 2013Duchi et al., 2010Morais-de-Sá et al., 2010Simões et al., 2010Kim et al., 2009Krahn et al., 2009Wirtz-Peitz et al., 2008Wang and Riechmann, 2007Djiane et al., 2005Harris and Peifer, 2005Betschinger et al., 2003Wodarz et al., 2000low
aPKC – clu  Goh et al., 2013)  Intermediate-low
aPKC – crb  Kempkens et al., 2006Sotillos et al., 2004)low
aPKC – dlg1  Golub et al., 2017)high
aPKC – futsch  Ruiz-Canada et al., 2004)  high
aPKC – fz  Djiane et al., 2005)intermediate
aPKC – kibra  Jin et al., 2015low
aPKC – l(2)gl  (Portela et al., 2024Calero-Cuenca et al., 2016Goh et al., 2013Guruharsha et al., 2011Tian and Deng, 2008Wirtz-Peitz et al., 2008Betschinger et al., 2003low
aPKC – mira  Atwood and Prehoda, 2009Wirtz-Peitz et al., 2008)low
aPKC – mts  Chabu and Doe, 2009Ogawa et al., 2009)intermediate
aPKC – nuf  Calero-Cuenca et al., 2016)Intermediate-low
aPKC – numb  Wirtz-Peitz et al., 2008)Intermediate-high
aPKC – par-1  (Calero-Cuenca et al., 2016Tian and Deng, 2008)high
aPKC – par-6  (Nunes de Almeida et al., 2019Calero-Cuenca et al., 2016Neumüller et al., 2012Guruharsha et al., 2011Atwood and Prehoda, 2009Kim et al., 2009Wirtz-Peitz et al., 2008Djiane et al., 2005Hutterer et al., 2004Ruiz-Canada et al., 2004Betschinger et al., 2003)low
aPKC – pbl  (Rosa et al., 2015)low
aPKC – pon  
(Wirtz-Peitz et al., 2008)
low
aPKC – ref(2)P  
(Avila et al., 2002)
low
aPKC – sdt  (Koch et al., 2016)high
aPKC – sif  
(Wang et al., 2018)
high
aPKC – tws  (Chabu and Doe, 2009)intermediate
aPKC – wupA  (Casas-Tintó and Ferrús, 2019)intermediate
aPKC – yrt(Gamblin et al., 2014)intermediate

1.1 Potential aPKC protein interaction partners in MNs

    Gene nameFlybase IDProteinDescription
    discs large 1(dlg)  FBgn0001624guanylate kinasecell polarity maintenance of apicobasal polaritycellular growth control during larval developmentantagonistic to the aPKC complex in polarity regulation and synaptic development
    futsch   microtubule binding protein  formation of synaptic buttons at the neuromuscular junctions
    par-1  FBgn0260934non-specific serine/threonine protein kinase  microtubule cytoskeleton organization,axis specification and cell polarity
    stardust (sdt)  FBgn0261873guanylate kinasemaintenance of apico-basal cell polarity organization of zonula adherens
    still life (sif)  FBgn0085447guanine nucleotide exchange factor for Rho family GTPasesregulation synaptic growth at NMJs
    numb
    FBgn0002973
    membrane-associated inhibitor of Notch signalingInhibitor of notch signalingcontrols neuroblast and sense organ precursor asymmetric division

    1.2 Summary RNA-protein interactions aPKC-flybase

    RNA-protein interactionFlybase IDsourceMN expression level interaction partner/aPKC
    aPKC – kin17 
    (Connell et al., 2024)
    low
    aPKC – orb (Barr et al., 2019)intermediate
    aPKC – orb2FBgn0264307(Xu et al., 2014Mastushita-Sakai et al., 2010)high
        

    2. Promotor sequence analysis FoxP target genes

    dFoxP

    • function:  transcription factor expressed in the nervous system; involved in locomotion, operant self-learning and courtship behavior
    • consensus seq FoxP: AAACAaATTTC (Santos et al., 2015; JASPAR data base)
    • human ortholog:  Hsap\FOXP4, Hsap\FOXP1, Hsap\FOXP2, Hsap\FOXP3
    • expression pattern:
    • indirect flight muscle (thoracic dorso-longitudinal muscles (DLM))
    • leg muscle motor neuron (high)

    2.1 Potential FoxP target genes

    AAACAAATTTC

      insc – Inscuteable (insc)

        • function: encodes an adaptor protein required for asymmetric cell division; interacts with the microtubule binding protein encoded by mud and the adaptor encoded by pins; also binds to the apical complex proteins encoded by baz, par-6 and aPKC and may recruit microtubule binding proteins to the apical cell cortex to induce apical-basal spindle orientation
        •  human ortholog:  –
        • expression in MNs: low

        AAACACATTTC

          CG15233 

          • function: uncharacterized protein; putative target of stat and escargo, two master regulators of intestinal stem cells (Khanbabaei et al., 2023)
          • human ortholog:  –
          • expression pattern:
          • indirect flight muscle
          • low in MNs (leg muscle motor neuron)

          bowl 

          • function: putative transcription factor; leg joint formation, acting downstream of notch to pattern the leg tarsal segments;
          • acts downstream of drm and lin during foregut and hindgut patterning and morphogenesis; involved in cell rearrangement during elongation of the embryonic hindgut; regulates expression of hindgut patterning genes to establish the small intestine region of the embryonic hindgut
          • human orthologs: Hsap\EGR2, Hsap\KLF11, Hsap\EGR4, Hsap\ZBTB4, Hsap\KLF15, Hsap\EGR1, Hsap\OSR2, Hsap\OSR1, Hsap\ZBTB38, Hsap\ZBTB2, Hsap\EGR3, Hsap\SP2, EGR: early growth response genes, supress exessive immune responses dysfunctions associated with inflammatory autoimmunse diseases like multiple sclerosis (MS), type 1 diabetes and inflammatory bowel disease (Powrie and Coffman 1993; Liblau, Singer et al. 1995, Morita et al., 2016)
          • expression pattern:
          • indirect flight muscle
          • low in MNs (leg muscle motor neuron)

            AAACATATTTC

            CG4477 

            • function: peptidase S1 domain-containing protein; Serine-type endopeptidase   activity, involved in wing disc dorsal/ventral pattern formation; proteolysis,
            • human ortholog: responsible for vital processes in man such as digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity
            • expression pattern:
            • low in MNs (leg muscle motor neuron)
            • moderate expression in muscle cells  (indirect flight muscle )

            CG30354- UQCR-11L

            • function: cytochrome b-c1 complex subunit 6; component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) which is part of the mitochondrial respiratory chain; formation of the complex between cytochromes c and c1. UQCRH/QCR6 family. [a.k.a. FBgn0050354, UQCR-11L-PB, UQCR-11L-PA, CG30354],
            • human ortholog: Hsap\UQCRH (Ubiquinol-Cytochrome C Reductase Hinge) protein
            • expression pattern:
            • indirect flight muscle
            • low in MNs (leg muscle motor neuron)

              AAACAGATTTC

              CG10864 

              • function: potassium ion leak channel activity; potassium channel activity; involved in potassium ion transmembrane transport; stabilization of membrane potential; two pore domain potassium channel (TC 1.A.1.8) family
              • human orthologs: Hsap\KCNK4, Hsap\KCNK18, Hsap\KCNK5, Hsap\KCNK7, Hsap\KCNK2, Hsap\KCNK10, Hsap\KCNK12, Hsap\KCNK16, Hsap\KCNK17, Hsap\KCNK6, Hsap\KCNK1
              • expression pattern:
              • indirect flight muscle
              • low in MNs (leg muscle motor neuron)

                AAACAATTTC

                Lhr – Lethal hybrid rescue (Lhr)

                • function: encodes a protein required to repress transposable element and satellite DNA expression. It also has a gain-of-function phenotype of causing lethality in F1 male hybrids between D. melanogaster and D. simulans
                • human orthologs:
                • expression pattern:
                • indirect flight muscle
                • low in MNs (leg muscle motor neuron)

                Source: EPD The Eukaryotic Promoter Database

                Category: Foxp, operant self-learning, PKC

                Leave a Reply

                Your email address will not be published. Required fields are marked *

                This site uses Akismet to reduce spam. Learn how your comment data is processed.