

Bachelor Thesis

Creating Conditional CRISPR Lines for Prominent Learning Mutants

in Drosophila melanogaster

Accomplished at University of Regensburg Faculty for Biology and Preclinical Medicine Institute for Zoology Department of Neurogenetics

> Supervisor: Prof. Dr. Björn Brembs

Submitted by Isabel Stark Regensburg, October 2023

Table of Contents

List of	f Figures	3
List of	f Tables	3
Abstra	act	4
Zusan	nmenfassung	5
1. In	ntroduction	6
2. M	faterials	8
2.1.	Experimental Models and Corresponding Medium	8
2.2.	Plasmids, Primers and Oligonucleotides	9
2.3.	Chemicals, Enzymes and Commercial Kits	11
2.4.	Laboratory Materials	13
2.5.	Instruments, Appliances and Software	14
3. M	1ethods	16
3.1.	Gel Electrophoresis and DNA Extraction	16
3.2.	DNA Sequencing by Sanger	16
3.3.	Gradient PCR	17
3.4.	Generation of Tissue Specific CRISPR Lines	17
3.4.1.	Creating gRNAs	17
3.4.2.	Restriction Digest of pCFD6	19
3.4.3.	DNA Assembly Cloning	20
3.4.4.	Colony PCR	22
3.5.	Verifying Mutations <i>rsh¹</i> and <i>rut²⁰⁸⁰</i> in Fly Stocks	23
3.5.1.	Genomic DNA Isolation from Adult Flies	23
3.5.2.	Augmenting Gene Region of Supposed Mutation	24
4. R	esults	26
4.1.	Generation of Tissue Specific CRISPR Lines	26
4.2.	Verifying Mutations <i>rsh¹</i> and <i>rut²⁰⁸⁰</i> in Fly Stocks	28
5. D	viscussion	29
5.1.	Generation of Tissue Specific CRISPR Lines	29
5.2.	Verifying Mutations <i>rsh¹</i> and <i>rut²⁰⁸⁰</i> in Fly Stocks	31
6. R	eferences	32
7. Ir	ndex of Abbreviations	34
8. A	cknowledgements	36
9. A	ttachments	37
10.	Declaration of authorship	39

List of Figures

Figure 1: DNA Assembly of pCFD6 BbsI and three Inserts	6
Figure 2: Schematic representation of the CRISPR/Cas9 target sites	
Figure 3: Gel electrophoresis analysis of PCR products targeting either rsh or rut	
Figure 4: Gel electrophoresis analysis of pCFD6 restriction digest	
Figure 5: Gel electrophoresis analysis of cPCR products.	
Figure 6: Gel electrophoresis analysis of gDNA gradPCR and PCR products	30
Figure 7: Sanger sequencing of <i>rsh¹</i> amplicon	

List of Tables

Table 1: Experimental models	8
Table 2: Medium for bacteria	8
Table 3: Plasmids used for cloning.	9
Table 4: Primers and oligonucleotides for cloning.	9
Table 5: Primers and oligonucleotides for gDNA analysis	.10
Table 6: Buffers, solutions and chemicals	.11
Table 7: Enzymes.	.12
Table 8: Commercial kits.	.13
Table 9: Laboratory materials.	. 13
Table 10: Instruments and appliances.	.14
Table 11: Software.	.14
Table 12: Preparation for sequencing by Sanger.	.16
Table 13: Varying temperatures for gradient PCR	.17
Table 14: PCR for gRNA generation using Q5 High-Fidelity DNA Polymerase	. 18
Table 15: PCR increment program for gRNA generation	. 18
Table 16: Modifications in gRNAs generation.	. 18
Table 17: Restriction digest of pCFD6 with BbsI-HF restriction enzyme and Quick CIP	. 19
Table 18: Separate restriction digest reaction of pCFD6 with BbsI-HF restriction enzyme	. 20
Table 19: Dephosphorylation of pCFD6 BbsI with FastAP.	. 20
Table 20: Modifications of restriction digest of pCFD6.	. 20
Table 21: DNA mix used for assembly reaction with a 1:2 vector:insert ratio	.21
Table 22: Modifications of DNA assembly cloning.	.21
Table 23: cPCR of transformant colonies.	. 23
Table 24: PCR program for cPCR with Taq DNA polymerase.	. 23
Table 25: gDNA PCR Reaction with Phusion DNA polymerase.	. 24
Table 26: PCR program for gDNA.	. 25
Table 27: PCR Reaction with Phusion DNA Polymerase (Mod. 1.4).	.37
Table 28: Restriction digest of 8 µg of pCFD6 (Mod. 2.1)	.37
Table 29: Restriction digest of 5µg pCFD6 (Mod. 2.2).	. 38
Table 30: Dephosphorylation of pCFD6 BbsI with Antarctic Phosphatase (Mod. 2.2)	. 38
Table 31: Double digest of pCFD6 with HindIII and NheI (Mod. 1.5).	. 38

Abstract

Investigating learning and memory mutants in *Drosophila melanogaster* emphasizes the importance of genetic influences on brain functions, particularly considering observed performance variations in operant self-learning experiments with *rutabaga* and *radish* mutants (Brembs and Plendl, 2008; Brembs and Sun, 2017), possibly indicating an adaptation to their learning disabilities. To understand the interplay of mutations and developmental processes, generating flies receptive to conditional mutagenesis of those genes with precise tools like CRISPR/Cas9 is crucial for comparative experiments. This project aimed to create conditional CRISPR lines targeting the genes *rsh* and *rut*, while also verifying the presence of the mutations *rsh*¹ and *rut*²⁰⁸⁰ in existing fly stocks for data comparability. Therefore, we utilized a system of multiple CRISPR gRNAs flanked by tRNAs cloned into a vector capable of integrating into the genome to regulate the targeted gene disruption (Port and Bullock, 2016). We confirmed the presence of the *rsh*¹ mutation. However, challenges such as the creation of plasmid constructs require further attention due to time constraints.

Zusammenfassung

Zusammenfassung

Die Forschung an Drosophila melanogaster Lern- und Gedächtnismutanten betont die Bedeutung genetischer Einflüsse auf Gehirnfunktionen, insbesondere unter Berücksichtigung beobachteter Leistungsvariationen in operanten Selbstlernexperimenten mit *rutabaga* und *radish* Mutanten (Brembs and Plendl, 2008; Brembs and Sun, 2017), was möglicherweise auf eine Anpassung an ihre Lernbehinderung hindeutet. Um das Zusammenspiel von Mutationen und Entwicklungsprozessen zu verstehen, ist die Erzeugung von Fliegen, die empfänglich für bedingte Mutagenese dieser Gene sind, mithilfe von präzisen Werkzeugen wie CRISPR/Cas9 entscheidend für vergleichende Experimente. Das Ziel dieses Projekts war das Erschaffen konditionaler CRISPR-Linien, welche die Gene rsh und rut betreffen und gleichzeitig die Anwesenheit der Mutationen rsh¹ und rut²⁰⁸⁰ in vorhandenen Fliegenstämmen zur Datenvergleichbarkeit zu überprüfen. Daher haben wir ein System von mehreren CRISPR gRNAs flankiert von tRNAs verwendet, welches in einen Vektor kloniert wurde, der in der Lage ist, in das Genom zu integrieren, um die gezielte Genzerstörung regulieren zu können (Port und Bullock, 2016). Wir haben die Anwesenheit der rsh^1 Mutation bestätigt. Herausforderungen wie die Erstellung von Plasmidkonstrukten erfordern jedoch weitere Aufmerksamkeit aufgrund von Zeitbeschränkungen.

1. Introduction

Extensive research is devoted to the study of learning and memory mutants in *Drosophila melanogaster*. Understanding the genetic basis of learning and memory is essential to elucidate the principles underlying these processes. This requires precise genetic tools for targeted modulation of specific genes. Establishing a reliable system to introduce conditional gene disruption of these leaning mutants at any life stage of *Drosophila* will provide valuable insights into the complexities arising from both developmental processes and the mutations themselves. This is where a groundbreaking method, for which Jennifer A. Doudna and Emmanuelle Charpentier were awarded the 2020 Nobel Prize, comes into play. They found that utilizing a specific arrangement of clustered regularly interspaced palindromic repeats (CRISPR) alongside an enzyme called Cas9, which is derived from the bacterial immune system, enabled them to develop a powerful genetic tool for precise DNA editing (Doudna and Charpentier, 2014).

In 2016, Port and Bullock adapted this method for use in *Drosophila*. Their approach is based on releasing multiple CRISPR sgRNAs from a single precursor transcript using flanking tRNAs positioned between the sgRNAs. The endogenous tRNA processing machinery then separates the functional gRNAs from the tRNAs. These separated gRNAs cooperating with the Cas9 enzyme identify the specific sequence in the *Drosophila* genome and induce targeted mutagenesis. By utilizing the plasmid pCFD6 as vector for the transcript, they enabled its integration into the genome of recombinant fly embryos containing an integrase and attP sites (Groth et al., 2000), facilitated by the presence of attB sites in pCFD6. Additionally, the tRNA-gRNA transcript inserted into the pCFD6 vector is under the control of a UAS promoter, a crucial element of the GAL4/UAS system (Brand and Perrimon, 1993). This system enables the creation of conditional CRISPR lines by crossbreeding transgenic flies with the GAL4 driver line, allowing tissue specific gene disruption to be induced at any time. Therefore, the system provided by

Figure 1: DNA Assembly of pCFD6 BbsI and three Inserts. PCR1, PCR2 and PCR3 contain gRNAs targeting the desired gene.

Introduction

Port and Bullock at www.crisprflydesign.org for generating the desired plasmid construct targeting specific genes was used for this project (**Figure 1**). Following their protocol, numerous scientists have successfully cloned up to four gRNAs into the pCFD6 vector, including Rose et al. (2022), Rallis et al. (2020), Delventhal et al. (2019) and Sheng et al. (2022).

Mutations affecting the genes *rutabaga* (*rut*) and *radish* (*rsh*) are well-known for their impact on reduced learning abilities. In particular, the *rut*²⁰⁸⁰ and *rsh*¹ mutations have long been known to have this effect (Tully and Quinn, 1985; Zars et al., 2000; Folkers et al., 1993; Tully et al., 1994). However, there are studies suggesting that these mutants show enhanced learning compared to wild-type flies in certain experiments focused on operant self-learning (Brembs and Plendl, 2008; Brembs and Sun, 2017). This phenomenon may stem from their experience of growing up with their learning disability resulting from the mutations and adapting to it. Even so, it may be entirely attributed to the mutation itself, regardless of developmental effects. Therefore, it is imperative to generate flies capable of undergoing tissue specific mutagenesis targeting these genes at any time. Furthermore, conducting identical experiments focusing on operant self-learning with these CRISPR mutants and comparing the results with those of the mutants of *rsh*¹ and *rut*²⁰⁸⁰ is essential to gain comprehensive understanding.

The main objective of this project was to generate conditional CRISPR lines targeting the genes *rsh* and *rut*, respectively. Additionally, verifying the presence of the *rsh*¹ and *rut*²⁰⁸⁰ mutations in existing fly stocks was another goal to ensure comparable data.

2. Materials

2.1. Experimental Models and Corresponding Medium

Table 1: Experimental models.

Organism/Strain	Genotype	Description	Company
E. coli: DH5a	$F^- \phi 80 lac Z\Delta M15$	Heat shock competent	Thermo
competent	$\Delta(lacZYA-argF)U169$	E. coli for transfor-	Fisher Scien-
	$recA1 endA1 hsdR17 (r_{K},$	mation	tific Invitro-
	m_{K}^{+}) phoA supE44 λ^{-} thi-1		gen
	gyrA96 relA1		
	fhuA2 $\Delta(argF-lacZ)$ U169		New England
E. coli: NEB® 5-	phoA glnV44	Heat shock competent	Biolabs
alpha competent	$\Phi 80\Delta(lacZ)M15~gyrA96$	E. coli for transfor-	GmbH
(High Efficiency)	recA1 relA1 endA1 thi-1	mation	
	hsdR17		
			Laboratory of
D. melanogaster:	Nucleotide substitution:	aDNA analysis	Thomas
rsh ¹	$C \rightarrow T$	gDIVA analysis	Preat, Mines
			ParisTech
			Laboratory of
D. melanogaster:	D(1A, D) = 2080	aDNA analysis	Thomas
<i>rut</i> ²⁰⁸⁰	r{IAID} <i>rui</i>	gDINA analysis	Preat, Mines
			ParisTech

Table 2: Medium for bacteria.

Medium	Application	Composition	Company
LB _{Amp} medium	Liquid culture for <i>E</i> . <i>coli</i> growth with am- picillin resistance	LB ₀ medium with 100 µg/ml ampicillin	This project
LB _{Amp} plates	Culture plates with ampicillin for	LB _{Amp} medium with 1.5 % Bacto Agar	Lab-intern pro- duction

11	• ;	1
Mate	rial	S
munu	1 1011	\mathbf{D}

Medium	Application	Composition	Company
	selection of ampicil-		
	lin resistant E. coli		
		0.5% Yeast extract	Lab-intern pro-
I waa acuw Ducth	Liquid culture for E	1.0% Tryptone	duction
Lysogeny Broth	h Liquid culture for <i>E</i> .	1.0% NaCl	
medium (LB0)		0.3% 1N NaOH	
		pH 7, autoclaved	
		2.0% Vegetable Peptone	New England
		0.5% Yeast extract	Biolabs GmbH
SOC antonomth	Outgrowth medium	10 mM NaCl	
	for freshly trans-	2.5 mM KCl	
meatum	formed E. coli	10 mM MgCl2	
		10 mM MgSO4	
		20 mM Glucose	

2.2. Plasmids, Primers and Oligonucleotides

Table 3: Plasmids used for cloning.

Plasmid	Size	Resistance	Application	Company
		Amnicillin	Expression of mul-	Gift from Simon
pCFD6	9,699 bp	$\frac{100 \text{ ug/ml}}{100 \text{ ug/ml}}$	tiple gRNAs under	Bullock (Addgene
		100 µg/III	Gal4/UAS system	plasmid #73915)

Table 4: Primers and oligonucleotides for cloning.

Primer	5' to 3' Sequence	Application	
	CGG CCC GGG TTC GAT TCC CGG CCG ATG		
pcr1 rsh fwd	CAG AGC ACG AGG ACA TTC GGG CGT TTC	Creating gRNAs	
	AGA GCT ATG CTG GAA AC		
pcr1 rsh rev	ATT TGG AGC GCG AGT GCA GCT GCA CCA	Creating aPNAs	
	GCC GGG AAT CGA ACC	Cleaning gRNAS	
pcr2 rsh fwd	GCT GCA CTC GCG CTC CAA ATG TTT CAG	G Creating gPNAs	
	AGC TAT GCT GGA AAC	Creating gRIVAS	

11.	• 1
Mate	rials

Primer	5' to 3' Sequence	Application	
pcr2 rsh rev	TGC TGG TCC CAC TGC TCC TCT GCA CCA	Creating gPNAs	
	GCC GGG AAT CGA ACC	Cleaning grivAs	
pcr3 rsh fwd	GAG GAG CAG TGG GAC CAG CAG TTT CAG	Creating aDNAs	
	AGC TAT GCT GGA AAC	Cleaning grivAs	
pcr3 rsh rev	ATT TTA ACT TGC TAT TTC TAG CTC TAA		
	AAC TGC ACC GTG TAG GAA CCA GCT GCA	Creating gRNAs	
	CCA GCC GGG AAT CGA ACC		
pcr1 rut fwd	CGG CCC GGG TTC GAT TCC CGG CCG ATG		
	CAG CTG CAG TGT TCC GTG ATC AGT TTC	Creating gRNAs	
	AGA GCT ATG CTG GAA AC		
pcr1 rut rev	AAT GTG GGC ATC GAC ACC ACT GCA CCA	Creating a DNA a	
	GCC GGG AAT CGA ACC	Creating gRNAs	
pcr2 rut fwd	GTG GTG TCG ATG CCC ACA TTG TTT CAG	Creating aDNAs	
	AGC TAT GCT GGA AAC	Cleaning grinAs	
pcr2 rut rev	CGC TTA CGC CAT GAT GCC GCT GCA CCA	Creating gPNAs	
	GCC GGG AAT CGA ACC	Cleaning grives	
pcr3 rut fwd	GCG GCA TCA TGG CGT AAG CGG TTT CAG	Creating gRNAs	
	AGC TAT GCT GGA AAC	Creating grinAs	
pcr3 rut rev	ATT TTA ACT TGC TAT TTCTAG CTC TAA		
	AAC GCC ACC GGC GAC AGG ATG TCT GCA	Creating gRNAs	
	CCA GCC GGG AAT CGA ACC		
pcfd6 colony	ΑGA GCA TCA GTT GTG ΑΑΤ GA Α	Colony PCR	
new fwd	Non den ten dit did hai daa		
pcfd6 colony	TTA GAG CTT TAA ATCTCT GTA GGT AG	Colony PCR	
rev			

Table 5: Primers and oligonucleotides for gDNA analysis.

Primer	5' to 3' Sequence	Application
rsh fwd	CAC CGA GGA GAT ACT GAT CGC	gDNA analysis of <i>rsh</i> ¹ fly stock
rsh rev	CTG CCA CGA TAA CTG GAA GTA CA	gDNA analysis of <i>rsh</i> ¹ fly stock

Materials

Primer	5' to 3' Sequence	Application
rut2080 geno		gDNA analysis of
fwd	ACA GIT AAG ATC GCC GCG ITA	<i>rut</i> ²⁰⁸⁰ fly stock
rut2080 geno		gDNA analysis of
rev		<i>rut</i> ²⁰⁸⁰ fly stock

2.3. Chemicals, Enzymes and Commercial Kits

Table 6: Buffers, solutions and chemicals.

Substance	Application	Company	Composition
Agoroso universel	Agarose gel electro-	VWR International,	/
Agarose, universai	phoresis	LLC.	
Ampicillin	LB _{Amp} medium	Lab-intern production	100 mg/ml
Antarctic Phosphatase	Dephosphorylation	New England Biolabs	10x
Protection Buffor (10x)	of DNA 5'- and 3'-	GmbH	
Reaction Durier (10x)	ends	Omorr	
DNA I adder 100hn	Agarose gel electro-	New England Biolabs	500 µg/ml
DIA Lauder 1000p	phoresis	GmbH	
DNA Laddar 1kb	Agarose gel electro-	New England Biolabs	500 µg/ml
DIVA Lauder IKD	phoresis	GmbH	
dNTPs	PCR	Lab-intern production	10 mM
Col Dod 20v	Agarose gel electro-	Lab-intern production	30x
Ger Acu 30x	phoresis	Lao-intern production	
Gibson Assembly	DNA assembly clon-	New England Biolabs	2x
Master Mix	ing	GmbH	
Loading Dye Purple	Agarose gel electro-	New England Biolabs	6x
6x	phoresis	GmbH	
NEBuilder HiFi DNA	DNA assembly clon-	New England Biolabs	2x
Assembly Master Mix	ing	GmbH	
NEBuilder Positive	DNA assembly clon-	New England Biolabs	/
Control	ing	GmbH	
PBS (1X)	gDNA isolation	Lab-intern production	1x

Substance	Application	Company	Composition
Phusion HF Reaction	PCR using Phusion	New England Biolabs	5x
Buffer	DNA polymerase	GmbH	
Q5 High GC En-	PCR using Q5 DNA	New England Biolabs	5x
hancer	polymerase	GmbH	
O5 Possion Buffor	PCR using Q5 DNA	New England Biolabs	5x
Q5 Reaction Buller	polymerase	GmbH	
	Restriction digestion	New England Biolabs	10x
rCutSmart Buffer	and dephosphoryla-	CmbII	
	tion	GIIIDH	
TAE 1x	Agarose gel electro-	Lab-intern production	1x
	phoresis	Luo mem production	

Table 7: Enzymes.

Enzyme	Application	Composition	Company
Antarctic Phospha-	Dephosphorylation of	5,000 U/ml	New England Bi-
tase	DNA 5'- and 3'-ends		olabs GmbH
BbsI-HF restriction	Pastriction digest	20,000 U/ml	New England Bi-
enzyme	Restriction digest		olabs GmbH
FastAP Thermosen-	Dephosphorylation of	1 U/µl	
sitive Alkaline Phos-	DNA 5' and 2' and		Thermo Scientific
phatase	DNA 5 - and 5 -ends		
HindIII-HF re-	Restriction digest	20,000 U/ml	New England Bi-
striction enzyme	Restriction digest		olabs GmbH
NheI-HF restriction	Restriction digest	20,000 U/ml	New England Bi-
enzyme	Restriction digest		olabs GmbH
Phusion DNA Poly-	PCR	2,000 U/ml	New England Bi-
merase	TCK		olabs GmbH
Q5 High-Fidelity	DCD	2,000 U/ml	New England Bi-
DNA Polymerase	TCK		olabs GmbH
Onick CIP	Dephosphorylation of	5,000 U/ml	New England Bi-
QUICK CIF	DNA 5'- and 3'-ends		olabs GmbH

Materials

Enzyme	Application	Composition	Company
DNoso	aDNA isolation	$12.5 \mu g/ml$	Lab-intern produc-
KNASE	gDINA Isolation	12.5 µg/mi	tion
Taq DNA Polymer-	•DCD	1,250 U/ml	Lab-intern produc-
ase	ULCK		tion

Table 8: Commercial kits.

Kit	Application	Company	
E.Z.N.A. Gel Extraction	DNA extraction/purification	Omega Bio-tek, Inc.	
Kit	1		
NucleoSpin Plasmid Mini	Plasmid DNA nurification	MACHEREY-NAGEL	
Kit	r lusinia Drivr parineation	GmbH & Co.KG	
QIAamp DNA Micro Kit	Isolation of genomic DNA	OIAGEN	
(50)	isolution of genomic D101	Qui i OLI (

2.4.Laboratory Materials

Table 9: Laboratory materials.

Material	Application	Company
Eppendorf tubes 1,5 ml/2 ml	Miscellaneous	Eppendorf Corporate
Falcon tubes 15ml/50ml	Miscellaneous	Sarstedt
PCR tubes	Miscellaneous	Kisker Biotech GmbH & Co. KG
Pipette tips 1000 μl/200 μl/10 μl	Miscellaneous	Sarstedt
QIAamp MinElute Col- umn	Isolation of gDNA	QIAGEN

2.5.Instruments, Appliances and Software

Table 10: Instruments and appliances.

Instrument/Appliance	Application	Company
Biometra TOne 96, 230 V	PCP and incubation	Analytik Jena GmbH+Co.
Thermocycler	I CK and incubation	KG
E-Box VXS	Gel documentation	VWR PEQLAB
Gel Electrophoresis Sys-	Horizontal gel electrophore-	VWR PEOLAR
tem PerfectBlue	sis	V WKI LQLAD
Mini-Centrifuge	Miscellaneous	Sunlab Instruments
NanoDrop 1000 Spectro-	Quantifying DNA in solu-	Thermo Fisher Scientific
photometer	tion	Inc.
Pico 17 Microcontrifugo	Miscellancous	Thermo Fisher Scientific
Theo 17 Microcentinuge	Fico 17 Microcentriluge Miscenalieous	
Pipettes	Miscellaneous	Gilson Inc.
Thermomixer Compact	Incubation	Eppendorf Corporate
Vortex Mixer VV3	Miscellaneous	VWR

Table 11: Software.

Software	Application	Provider	Version
ChatGPT	Paraphrasing during	OpenAI	August 3 and Sep-
	writing process		tember 25
	Resource for genetic		FB2023_03
Flybasa	and genomic data of	Flybase	
Fiybase	Drosophila melano-	Tybase	
	gaster		
Microsoft 365 (Of- Writing and image Microsoft Corp		Microsoft Corpora-	18.2306.1061.0
fice)	processing	tion	
	Estimating optimal		v1.16.5
NER TM Colculator	annealing tempera-	New England Bi-	
	ture for PCR with	oLabs Inc.	
	NEB polymerases		

Materials

Software	Application Provider		Version
	Calculating required		v1.15.4
NEBioColoulator®	amount of insert for	New England Bi-	
NEDIOCAICUIAIOF®	DNA assembly reac- olabs GmbH		
	tion		
SnanGene	Visualizing reactions	Dotmatics	7.0
SnapOene	and figures	Dotinaties	

3. Methods

3.1.Gel Electrophoresis and DNA Extraction

Gel electrophoresis separates DNA molecules by length of base pairs, enabling analysis and purification of specific DNA fragments. In this project, gel electrophoresis was performed using 0.8% agarose gel and 1 kb DNA Ladder or 1% agarose gel and 100 bp DNA Ladder depending on the size of DNA fragments. The voltage ranged from 75 to 120V. To achieve the desired concentration of agarose gel, 100 ml of 1x TAE was boiled along with either 0.8 g or 1.0 g of agarose powder. For every DNA sample, Gel Red Loading Dye 5x was used in a 1x concentration. 5x concentration was prepared by combining 500 μ l Loading Dye 6x with 100 μ l Gel Red 30x. After the gel run, the DNA fragments were visualized by long-wavelength UV light using the E-Box VXS for analysis.

To obtain purified DNA of interest, the specific fragments were extracted from agarose gel slices using the E.Z.N.A. Gel Extraction kit – Spin Protocol according to manufacturer's guidelines. Final step was to measure the concentration of eluted DNA using the NanoDrop Spectrophotometer.

3.2. DNA Sequencing by Sanger

To determine if the plasmid construct had the correct inserts in correct order, or if amplicons of rsh^{1} or rut^{2080} contained the desired mutation, DNA sequencing by Sanger was used. Samples were prepared (see Table 12) with either forward or reverse primers. The choice of primer was based on the project. For plasmid samples, either pcfd6 colony new fwd or rev was utilized, while for gDNA samples, the choice was between rsh fwd or rev, and rut2080 geno fwd or rev depending on the gene. The samples were sent to Eurofins Genomics LLC for fast DNA sequencing.

Component	Plasmid Sample	gDNA Sample
DNA	500 ng	10 ng
10 μM forward or reverse primer	2.5 µl	2.5 µl
Nuclease-free water	ad 7.5 µl	ad 7.5 µl

Table 12: Preparation for sequencing by Sanger.

3.3.Gradient PCR

Determining the ideal annealing temperature through gradient PCR is crucial for better PCR outcomes in some cases. The reaction set up and program are identical to qualitative PCR. The only difference is the variable annealing temperatures applied to each reaction tube (see Table 13).

Reaction	rsh ¹ Amplicon	<i>rut²⁰⁸⁰</i> Amplicon
1	58.0°C	58.0°C
2	60.6°C	59.5°C
3	63.9°C	60.6°C
4	65.4°C	63.9°C
5	66.5°C	66.5°C
6	68.0°C	68.0°C

Table 13: Varying temperatures for gradient PCR.

3.4.Generation of Tissue Specific CRISPR Lines

3.4.1. Creating gRNAs

To generate the intended gRNAs for cloning, specifically designed primer pairs (pcr1rsh fwd and rev, pcr2 rsh fwd and rev, pcr3 rsh fwd and rev; pcr1 rut fwd and rev, pcr2 rut fwd and rev, pcr3 rut fwd and rev) were used to amplify the gRNAs targeting the genes *rsh* and *rut* by PCR. 640 pg undigested pCFD6 was used as template DNA per 50 µl reaction. For every primer pair, PCR was prepared on ice employing Q5 High-Fidelity DNA Polymerase (see Table 14) and an increment program with an annealing temperature increasing by 0.5°C per cycle (see Table 15) was run in Biometra TOne Thermocycler. Modifications for this procedure are documented in Table 16.

To purify PCR products, gel electrophoresis was performed on a 1% agarose gel at 120V followed by gel extraction and concentration measurement (see 3.1. Gel Electrophoresis and DNA Extraction).

Component	50 µl Reaction	Final Concentration
5x Q5 Reaction Buffer	10 µl	1X
10 mM dNTPs	1.0 µl	200 µM
10 µM forward primer	2.5 µl	0.5 µM
10 µM reverse primer	2.5 µl	0.5 μΜ
Template DNA: pCFD6	1.0 µl	640 pg
Q5 High-Fidelity DNA Pol- ymerase	0.5 µl	1.0 unit
Nuclease-free water	ad 50 µl	

Table 14: PCR for gRNA generation using Q5 High-Fidelity DNA Polymerase.

Table 15: PCR increment program for gRNA generation. 56°C Δ T: Starting at 56°C, annealing temperature increases 0.5°C per cycle until 72°C is reached.

Step	Temperature	Time	Cycles
1. Initial Denaturation	98°C	2 min	
2. Denaturation	98°C	10 sec	
3. Annealing	56°C ΔΤ	15 sec	32x
4. Extension	72°C	15 sec	
5. Final Extension	72°C	2 min	
6. Hold	10°C	x	

Table 16: Modifications in gRNAs generation.

Modification	Amount	Results No.
Template DNA pCFD6	$^{1}/_{10} \text{ of } 640 ^{\text{pg}}/_{\mu 1}$	1.1
Q5 High GC Enhancer 5x	10 μ l added (1x) to reaction	1.2
Template DNA nCFD6	$^{1}/_{5}$ of 640 pg/µl	13
Template DIAA per Do	for PCR1 rsh and PCR1 rut	110
DNA polymerase	Phusion DNA Polymerase (see Attach-	1.4
Dimpolymeruse	ments)	
	pCFD6 digested with restriction en-	
Template DNA pCFD6	zymes HindIII and NheI as template	1.5
	DNA (see Attachments)	

Methods

Modification	Amount	Results No.
	Cut off as much gel as possible and sec-	
Gel extraction	ond wash step with SPW buffer to re-	1.6
	duce guanidine thiocynate, which can	1.0
	reduce efficiency of assembly reaction	

3.4.2. Restriction Digest of pCFD6

For cloning, it was necessary to digest plasmid pCFD6 with BbsI-HF Type IIS restriction enzyme. Additionally, the 5'- and 3'-ends of the DNA had to be dephosphorylated to prevent religation of the empty plasmid. This was executed in two different ways. Modifications for both procedures are documented in Table 20.

The initial approach was utilizing restriction enzyme BbsI and phosphatase Quick CIP in a single reaction (see Table 17). The mixture was incubated at 37°C for at least 3 h, with the phosphatase being added one hour after the start of incubation. To inactivate enzymes and isolate pCFD6 backbone, the reaction was run on a 0.8% agarose gel at 100V, extracted and the DNA concentration of pCFD6 BbsI AP was quantified (see 3.1. Gel electrophoresis and DNA Extraction).

The second method was to implement a two-step preparation with separate restriction digest and dephosphorylation. Restriction digest was prepared in a higher volume (see Table 18) and incubated at 37°C for 3 h. The digested DNA was separated on a 0.8% agarose gel at 100 V, extracted and measured (see 3.1. Gel Electrophoresis and DNA Extraction). Dephosphorylation was set up with Fast Antarctic Phosphatase (FastAP) (see Table 19) and E.Z.N.A. Gel Extraction Kit – Enzymatic Reaction Protocol was utilized according to manufacturer's guidelines and resulting concentration was assessed with NanoDrop Spectrophotometer.

Component	30 µl Reaction	Final Concentration
pCFD6	variable	1 µg
rCutSmart Buffer (10x)	3.0 µl	1x
BbsI-HF	1.0 µl	20 units
Quick CIP	1.0 µl	5 units
Nuclease-free water	ad 30 µ1	

Table 17: Restriction digest of pCFD6 with BbsI-HF restriction enzyme and Quick CIP.

Component	80 µl Reaction	Final Concentration
pCFD6	variable	8 µg
rCutSmart Buffer (10x)	8.0 µl	1x
BbsI-HF	4.0 µl	80 units
Nuclease-free water	ad 80 µl	

Table 18: Separate restriction digest reaction of pCFD6 with BbsI-HF restriction enzyme.

Table 19: Dephosphorylation of pCFD6 BbsI with FastAP.

Component	35 µl Reaction	Final Concentration
pCFD6 BbsI	30 µl	variable
FastAP Buffer (10x)	3.5 µl	1x
FastAP	1.5 µl	1.5 units

Table 20: Modifications of restriction digest of pCFD6.

Modification	Amount	Results No.	
BbsI and QuickCIP	Higher amount of pCFD6:	2 1	
	8µg	2.1.	
Antarctic Phosphatase	See Attachments	2.2	
Two-step preparation	Two agarose gels used for	23	
	inactivation	2.5	

3.4.3. DNA Assembly Cloning

To obtain the desired DNA constructs, it is essential to assemble the vector pCFD6 BbsI AP with the three gRNA inserts targeting either *rsh* or *rut* in correct order. For efficiency purposes, fragments were designed with 20–25 bp overlaps. The required quantity of inserts when utilizing 100 ng of digested pCFD6 BbsI AP with a two-fold molar excess of each insert was calculated (see Table 21). DNA mix was prepared on ice for use with NEBuilder HiFi DNA Assembly Master Mix following manufacturer's guidelines. An extended incubation time of 60 minutes was implemented to improve efficiency, as recommended. NEBuilder Positive Control was incubated likewise to assess the quality of the master mix and effectiveness of the procedure.

Methods

Component	bp	pmol	ng
pCFD6 BbsI AP	9,600	0.016	100
Fragment PCR1	233	0.032	4.85
Fragment PCR2	204	0.032	4.24
Fragment PCR3	234	0.032	4.87
Nuclease-free water			ad 10 µl

Table 21: DNA mix used for assembly reaction with a 1:2 vector:insert ratio.

For heat shock transformation, we followed the Chemically Competent Cells Transformation Protocol from NEBuilder HiFi DNA Assembly Cloning Kit to a certain extent. 10 μ l of assembly reaction was mixed to 100 μ l of DH5 α competent *E. coli*. Heat shock was extended to 40 seconds. 900 μ l of room tempered SOC medium was added and incubated at 500 rpm in a Thermomixer. 125 μ l of cells were spread onto pre-warmed LB_{Amp} selection plates. Remaining solution was centrifuged at 5,000 *g* for 2 minutes to remove most of supernatant. The cell pellet was resuspended in remaining supernatant and spread onto LB_{Amp} plates. Same process was executed for both the NEBuilder Positive Control and the negative control. The latter control was performed to monitor number of background colonies, which contained re-ligated vector. For that, the same amount of digested pCFD6 BbsI AP was filled with nuclease-free water to 20 μ l and 10 μ l of it was transformed to 100 μ l cells likewise. All LB_{Amp} plates were incubated at 37°C for approximately 16-18 h overnight. Modifications for the complete procedure are documented in Table 22.

Modification	Amount	Results No.
Rotation during incubation	300-700 rpm	4.1
Competent E_coli	NEB 5-alpha competent	42
Competent E. cou	(High Efficiency)	Τ.Δ
Assembly mix	Transformation of 5 µl	4.3
DNA mix	Transformation of DNA mix	4.4
	for background check	
	NEBuilder HiFi DNA As-	
DNA assembly cloning	sembly Cloning Kit was	4.5
	completely followed.	

Table 22: Modifications of DNA assembly cloning.

Modification	Amount	Results No.
Scanlan et al. (2022)	3:1 molar ratio and 4 h incu-	4.6
	bation	
Master mix	Gibson Assembly Master	4.7
	Mix was used	
Cell check	Non-transformed DH5 α	4.8
	competent cells were plated	
Vector	50 ng of pCFD6 BbsI AP for	4.9
	DNA mix	
Transformation	5 µl assembly reaction to 70	4.10
	μl DH5α competent <i>E. coli</i>	
Transformation	2 µl assembly reaction to 70	4.11
	μl DH5α competent <i>E. coli</i>	

Methods

3.4.4. Colony PCR

To determine whether inserts targeting *rsh* or *rut* were present or absent in the plasmid construct of grown transformants, colony PCR (cPCR) was performed. Individual colonies were picked with a 10 μ l pipette tip. Initially, they were spread onto a fresh LB_{Amp} plate, and subsequently, they were added directly into the cPCR reaction prepared on ice (see Table 23). Samples were transferred to Biometra TOne and cPCR program was run (see Table 24). The released DNA construct serves as template for cPCR specific primers (pcfd6 colony new fwd and pcfd6 colony rev), which are designed to target vector DNA flanking insert area. Presence or absence is determined by molecular size of resulting PCR amplicon on an 1% agarose gel (see 3.1. Gel Electrophoresis and DNA Extraction).

To confirm the presence and correct order of inserts by utilizing Sanger DNA sequencing, colonies that seemed to carry the desired plasmid construct were inoculated from LB_{Amp} plate into 3.0 ml LB_{Amp} medium and kept at 37°C and 225 rpm for approximately 16 h. LB_{Amp} medium was prepared by adding 50 µl ampicillin (100mg/ml) to 50 ml LB_0 under sterile conditions to achieve a final concentration of 100 µg/ml. Plasmid construct was miniprepped from liquid culture with NucleoSpin Plasmid Mini Kit according to manufacturer's guidelines. Concentration of received product was measured and prepared for DNA sequencing by Sanger (see 3.2.).

Component	20 µl Reaction	Final Concentration
10x ThermoPol Reaction	2 0 µl	1 x
Buffer	2.0 μ1	17
10 mM dNTPs	0.4 µl	200 µM
10 µM forward primer	0.4 µl	0.2 μΜ
10 µM reverse primer	0.4 µl	0.2 μΜ
Taq DNA polymerase	0.4 µl	0.5 units
Nuclease-free water	ad 20 µl	

Table 23: cPCR of transformant colonies.

Table 24: PCR program for cPCR with Taq DNA polymerase.

Step	Temperature	Time	Cycles
1. Initial Denaturation	95°C	5 min	
2. Denaturation	95°C	20 sec	
3. Annealing	50°C	40 sec	32x
4. Extension	68°C	1 min	
5. Final Extension	68°C	5 min	
6. Hold	16°C	∞	

3.5. Verifying Mutations rsh¹ and rut²⁰⁸⁰ in Fly Stocks

3.5.1. Genomic DNA Isolation from Adult Flies

Five mutant flies of each sex were collected in a 1.5 ml cup while anaesthetized with carbon dioxide gas and immediately shock frosted with liquid nitrogen. 175 μ l of 1x PBS and 20 μ l of RNase were added and mixed by pipetting, to continue with manually homogenizing the flies using a sterile pestle on ice. For the following steps QIAamp DNA Micro Kit was utilized. 20 μ l of Proteinase K was gently blended into the sample and left for 1 min at room temperature (RT). The mixture was lysed with 200 μ l buffer ATL while incubating in a Thermomixer at 56°C for 10 min. After cooling down to RT, 200 μ l of 100% ethanol was blended in for optimal binding of gDNA to the silica-gel membrane of a QIAamp MinElute Column, which had been stored at 4°C. Centrifugation at 6,000 *g* for 1 min removes unbound components. To purify the bound gDNA while removing unwanted components, two buffers are introduced successively,

Methods

first 500 µl of AW1 buffer, followed by 500 µl of AW2 buffer. Both solutions get centrifuged at 6,000 g for 1 min and each flowthrough is discarded. Centrifugation at 17,000 g for 3 min eliminates leftover ethanol, preventing interference with gDNA. The column is transferred to a new tube and 50 µl of AE buffer is left on the silica-gel membrane at RT for 35 min. Centrifuging at 6,000 g for 1 min releases the eluted gDNA from the membrane. 1µl of gDNA was run on a 0.8% agarose gel (see 3.1. Gel Electrophoresis and DNA Extraction) for quality assessment.

3.5.2. Augmenting Gene Region of Supposed Mutation

To verify the mutation in the specific gene region utilizing Sanger sequencing, it was necessary to first generate the desired amplicon of mutated area via PCR. For that, the gDNA served as template and the reaction was set up on ice with specifically designed primer pairs (rsh fwd/rev or rut2080 geno fwd/rev) and Phusion DNA Polymerase (see Table 25). The annealing temper-ature employed in the PCR program on a Biometra TOne Thermocycler (see Table 26) was calculated using NEB TM calculator and further optimized through gradient PCR (see 3.3.). Elongation time was dependent on the size of amplicon and the chosen DNA polymerase with an estimated duration of 30 sec per 1 kb. PCR products were purified by running them on a 1% agarose gel at 100V followed by gel extraction. After measuring the achieved concentration (see 3.1. Gel Electrophoresis and DNA Extraction), the cleaned-up amplicon was DNA sequenced by Sanger (see 3.2.).

50 µl Reaction	Final Concentration
10 ul	1 V
10 µI	1A
1.0 µl	200 µM
2.5 µl	0.5 μΜ
2.5 µl	0.5 μΜ
variable	100 ng
0.5 µl	0.02 U/µl
ad 50 µl	
	50 μl Reaction 10 μl 1.0 μl 2.5 μl 2.5 μl variable 0.5 μl ad 50 μl

Table 25: gDNA PCR Reaction with Phusion DNA polymerase.

Methods

Table 26: PCR program for gDNA	. Extension time depends on	amplicon size, for rsh	¹ 15 sec
and for rut^{2080} 35sec.	_	-	

Step	Temperature	Time	Cycles
1. Initial Denaturation	98°C	5 min	
2. Denaturation	98°C	15 sec	
3. Annealing	65°C	15 sec	36x
4. Extension	72°C	15 35 sec	
5. Final Extension	72°C	2 min	
6. Hold	16°C	∞	

4. Results

4.1. Generation of Tissue Specific CRISPR Lines

Generating conditional CRISPR lines for the genes *rsh* and *rut* in *Drosophila melanogaster* requires plasmids containing CRISPR gRNAs capable of integrating into the fly genome. Subsequent crossbreeding with GAL4-Cas9 flies enables the CRISPR/Cas9 complex to act on the specific genes under the GAL4/UAS system. gRNAs were designed to target the individual splice forms of the genes *rsh* and *rut* prior to the functional protein domains enabling the

Figure 2: Schematic representation of the CRISPR/Cas9 target sites. A, B, CRISPR/Cas9 disrupts the individual splice forms of genes (A) *rsh* (=*rad*) and (**B**) *rut*, which results in non-functional protein domains.

CRISPR/Cas9 complex to disrupt the region and making them non-functional (**Figure 2**). These gRNAs generated by increment PCR were analyzed by gel electrophoresis and bands were observed at 233 bp for PCR1 *rsh/rut*, at 204 bp for PCR2 *rsh/rut* and at 234 bp for PCR3 *rsh/rut* as anticipated (**Figure 3**). BbsI-HF digested and dephosphorylated plasmid pCFD6 was analyzed by gel electrophoresis and bands were expected at approximately 9.6 kb and detected between 8.0 and 10.0 kb (**Figure 4**).

pCFD6 BbsI AP was assembled with products PCR1, PCR2 and PCR3 targeting either *rsh* or *rut* and heat-shock transformed into competent *E. coli*. Resulting colonies were examined on the LB_{Amp} plates. As expected, positive control plates exhibit colony growth. Surprisingly, on negative control plates, which contain cells transformed with digested pCFD6, nearly the same number of colonies grew compared to the experimental plates. Colonies transformed with pCFD6 construct were analyzed via cPCR followed by gel electrophoresis (**Figure 5**). Control PCR of intact pCFD6 is meeting expectations of 623 bp. The amplified area of vector with all three inserts in correct order has an expected size of 1,015 bp. This was the estimated value for colony c5 (**Figure 5A**). Most bands of cPCR products are at approximately 300 bp. Constructs

Figure 3: Gel electrophoresis analysis of PCR products targeting either *rsh* or *rut.* **A**, **B**, 1% agarose gel loaded with 100 bp DNA Ladder and PCR products amplified with different primer pairs: (A) PCR1 *rsh*: pcr1 rsh fwd/rev; PCR2 *rsh*: pcr2 rsh fwd/rev; PCR3 *rsh*: pcr3 rsh fwd/rev. (**B**) PCR1 *rut*: pcr1 rut fwd/rev; PCR2 *rut*: pcr2 rut fwd/rev; PCR3 *rut*: pcr3 rut fwd/rev.

with absence of all inserts are expected at 439 bp, which was observed for colony c8. A size of roughly 600bp was received for c10, which represents constructs including one insert. The band of colony c7 was at about 850 bp, as anticipated for vectors with two inserts (**Figure 5B**). Most promising findings of c5 for the presumed pCFD6-*rsh* construct and c7 for the putative pCFD6-*rut* were subjected to Sanger sequencing. The analysis revealed that the included inserts were either fragmented or disordered.

Modifications that resulted in no grown colonies were 2.1 and 2.2 for restriction digest (see Table 18), 4.4, 4.6 and 4.8 for DNA assembly cloning (see Table 20). Colonies without three inserts were obtained with modifications of gRNA creation: 1.1 to 1.6 (see Table 14), modifications of restriction digest: 2.3 (see Table 18), and modifications of DNA assembly cloning: 4.1 to 4.3, 4.5, 4.7, 4.9 to 4.11 (see Table 20). All modifications did not lead to any positive transformants. Therefore, the creation of pCFD6-*rsh* and pCFD6-*rut* constructs was not possible.

4.2. Verifying Mutations *rsh*¹ and *rut*²⁰⁸⁰ in Fly Stocks

Verification of the mutants required extraction of gDNA from present fly stocks and subsequent amplification of mutation sites by PCR. Annealing temperature was calculated to be 65° C for rsh^{1} and 60° C for rut^{2080} , respectively. Gradient PCR confirmed that the optimal temperature for rsh^{1} was 65.4° C. For rut^{2080} , it was not possible to determine the required annealing temperature. GradPCR resulted in multiple bands, none of which matched the expected size of 810 bp (**Figure 6A**). Therefore, clearly verifying the rut^{2080} mutation in present fly stocks was not applicable. Via PCR, an about 200bp large amplicon of rsh^{1} mutation area was detected (**Figure 6B**) and Sanger sequenced, which displayed the desired point mutation of cytidine to thymidine. This finding confirms that present fly stocks of rsh^{1} mutants still carry the relevant mutation.

Figure 4: Gel electrophoresis analysis of pCFD6 restriction digest. 0.8% agarose gel loaded with 1 kb DNA Ladder and digested, dephosphorylated pCFD6 BbsI AP.

5. Discussion

5.1. Generation of Tissue Specific CRISPR Lines

To create CRISPR lines for the *rsh* and *rut* learning mutants, the generation of plasmid constructs containing gRNAs directed towards these specific genes was essential. Generating the inserts via PCR along with pCFD6 digestion was apparently successful according to gel electrophoresis analysis. Interestingly, negative control plates showed a remarkable number of colonies transformed with pCFD6 BbsI AP. Despite various approaches, DNA assembly of these components was not possible. Port and Bullock (2016) provided the system available at www.crisprflydesign.org utilized in this project to perform CRISPR-based gene disruption in *Drosophila*. They successfully created a plasmid construct containing two sgRNAs suitable for microinjecting into fly embryos. Although they used four gRNAs for their cloning, our efforts

Figure 5: Gel electrophoresis analysis of cPCR products. A, **B**, 1% agarose gel loaded with 100 bp DNA Ladder, control PCR (ctrl) of intact pCFD6 and cPCR products of *E. coli* colonies transformed with DNA assembly mix containing either inserts (**A**) PCR1 *rsh*, PCR2 *rsh* and PCR3 *rsh* for the putative construct pCFD6-*rsh* or (**B**) PCR1 *rut*, PCR2 *rut* and PCR3 *rut* for the putative construct pCFD6-*rut*.

to replicate the successful DNA assembly achieved by Scanlan et al. (2022) using a 3:1 molar ratio and incubation time of 4 h for the DNA assembly were ineffective. These are surprising results that were beyond our initial expectations. Especially considering the numerous studies with successful results, such as Rose et al. (2022), Rallis et al. (2020) or Delventhal et al. (2019) cloning four gRNAs using three inserts and Sheng et al. (2022) cloning two gRNAs into the pCFD6 vector.

One plausible explanation for these differing results could be the possible re-ligation of digested pCFD6, despite the use of gel electrophoresis to isolate and purify the desired DNA fragment prior to further manipulations. This theory is supported by the number of colonies observed on the negative control plates and the count of cPCR amplicons that lacked any inserts. These results suggest potential problems with the restriction digest of pCFD6 or its re-ligation before or during DNA assembly. However, we cannot exclude the possibility that other procedural issues may also play an important role in interaction during DNA assembly. Further investigation and optimization of the assembly process and preceding steps are crucial to overcome these challenges. Interestingly, Port et al. (2020) generated the plasmid constructs for their recent cloning by subjecting all inserts to digestion with the appropriate restriction enzyme after PCR amplification and prior to the DNA assembly reaction. This may hold potential as a future strategy.

After successful construct generation, further steps would involve microinjecting constructs into fly embryos to obtain transformants with CRISPR-mediated gene mutations in either *rsh* or *rut*. These CRISPR lines are anticipated to provide deeper insights into experiments focusing on enhanced self-learning in flies with notable learning mutations, such as rut^{2080} and rsh^1 (Brembs and Plendl, 2008; Brembs and Sun, 2017). The CRISPR-mediated disruption of these genes will help determining whether increased self-learning is developmental in flies born with mutations, or if this effect can be observed with the conditional CRISPR lines induced with those mutations. Unfortunately, the time constraints of this bachelor's thesis prevented the generation of tissue specific CRISPR lines.

Figure 6: Gel electrophoresis analysis of gDNA gradPCR and PCR products. A, B, 1% agarose gel loaded with 100 bp DNA Ladder and either (A) gradient PCR products of rut^{2080} mutant gDNA or (B) PCR products of rsh^1 mutant gDNA.

5.2. Verifying Mutations *rsh*¹ and *rut*²⁰⁸⁰ in Fly Stocks

Another critical step in this project was to validate mutations in current fly stocks used for studies of enhanced self-learning in mutant flies (Brembs and Plendl, 2008; Brembs and Sun, 2017). To ensure consistency with the anticipated CRISPR lines, it was essential to confirm the presence of the respective mutations, rsh^1 and rut^{2080} . We attempted to generate amplicons containing the specific mutation region from the flies' gDNA and confirm the presence of the mutations via Sanger sequencing. For rsh^1 , this attempt was successful and led to the verification of the cytidine-to-thymidine point mutation (**Figure** 7) first described by Folkers et al. (2006), who also prepared the DNA in a similar manner.

The transposable P element insertion at the *rut* locus (rut^{2080}) was first isolated via plasmid rescue (Levin et al., 1992 and Han et al., 1996). This P element is contained by the used primers for the rut^{2080} amplicon. For this region, determining the required annealing temperature proved challenging because gradient PCR yielded multiple bands in gel electrophoresis analysis at the calculated temperature. Indeed, multiple bands in PCR can have different interpretations. Before considering explanations such as the insertion being found in a heterozygous state, it's crucial to address the PCR conditions as they can significantly contribute to this phenomenon. Adjustments of DNA polymerases, implementing additional purification steps for the gDNA, and use of negative controls, such as gDNA from wild-type flies, to validate the PCR results should be primary steps in troubleshooting. Unfortunately, the time constraints of this bachelor's thesis prevented the attainment of satisfactory results for verification of rut^{2080} .

Figure 7: Sanger sequencing of rsh^1 amplicon. Verification of the cytidine-to-thymidine point mutation.

6. References

Brembs B, Plendl W (2008). Double dissociation of PKC and AC manipulations on operant and classical learning in *Drosophila*. *Curr. Biol.* 18, 1168-1171.

DOI: 10.1016/j.cub.2008.07.041

Brembs B, Sun W (2017). Searching for the genetic components of long-term memory for operant self-learning in *Drosophila*. *Soc. Neurosci. Abstr.*, 317.01.

Brand AH, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. *Development* 118(2), 401-415.

DOI: 10.1242/dev.118.2.401

Delventhal R, O'Connor RM, Pantalia MM, Ulgherait M, Kim HX, Basturk MK, Canman JC, Shirasu-Hiza M (2019). Dissection of central clock function in *Drosophila* through cell-specific CRISPR-mediated clock gene disruption. *eLife* 8, e48308.

DOI: 10.7554/eLife.48308

Doudna JA, Charpentier E (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science* 346(6213), 1258096.

DOI: 10.1126/science.1258096

Folkers E, Drain P, Quinn WG (1993). *radish*, a *Drosophila* mutant deficient in consolidated memory. *PNAS* 90(17), 8123-8127.

DOI: 10.1073/pnas.90.17.8123

Folkers E, Waddell S, Quinn WG (2006). The *Drosophila radish* gene encodes a protein required for anesthesia-resistant memory. PNAS 103(46), 17496-17500.

DOI: 10.1073/pnas.0608377103

Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000). A phage integrase directs efficient site-specific integration in human cells. *PNAS* 97(11), 5995-6000.

DOI: 10.1073/pnas.090527097

Han PL, Meller V, Davis RL (1996). The *Drosophila* Brain Revisited by Enhancer Detection. *J. Neurobiol.* 31(1), 88-102.

DOI: 10.1002/(SICI)1097-4695(199609)31:1<88::AID-NEU8>3.0.CO;2-B

Levin LR, Han PL, Hwan PM, Feinstein PG, Davis RL, Reed RR (1992). The *Drosophila* Learning and Memory Gene *rutabaga* Encodes a Ca²⁺/Calmodulin-Responsive Adenylyl Cyclase. *Cell* 68, 479-489.

DOI: 10.1016/0092-8674(92)90185-f

Port F, Bullock SL (2016). Augmenting CRISPR applications in *Drosophila* with tRNA-flanked sgRNAs. *Nature Methods* 13(10), 852-854.

DOI:10.1038/nmeth.3972

References

Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdörffer C, Frei J, Hess A, Kern K, Lange L, Langer N, Malamud R, Pavlović B, Rädecke K, Schmitt L, Voos L, Valentini E, Boutros M (2020). A large-scale resource for tissue-specific CRISPR mutagenesis in *Drosophila*. *eLife* 9, e53865.

DOI: 10.7554/eLife.53865

Rallis A, Navarro JA, Rass M, Hu A, Birman S, Schneuwly S, Thérond PP (2020). Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. *Cell Reports* 30, 2627-2643.

DOI: 10.1016/j.celrep.2020.02.006

Rose M, Domsch K, Bartle-Schultheis J, Reim I, Schaub C (2022). Twist regulates Yorkie activity to guide lineage reprogramming of syncytial alary muscles. *Cell Reports* 38, 110295.

DOI: 10.1016/j.celrep.2022.110295

Scanlan JL, Battlay P, Robin C (2022). Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in *Drosophila melanogaster*. *Current Research in Insect Science* 2, 100030.

DOI: 10.1016/j.cris.2022.100030

Sheng P, Li L, Li T, Wang Y, Hiers NM, Mejia JS, Sanchez JS, Zhou L, Xie M (2022). A conserved sequence in *Drosophila* Argonaute1 mRNA contributes to stress response via inducing miR-999 degradation. *bioRxiv*, 2022-11.

DOI: 10.1101/2022.11.16.515324

Tully T, Preat T, Boynton SC, Del Vecchio M (1993). Genetic dissection of consolidated memory in *Drosophila*. *Cell* 79, 35-47.

DOI: 10.1016/0092-8674(94)90398-0

Tully T, Quinn WG (1985). Classical conditioning and retention in normal and mutant *Drosophila* melanogaster. *J. Comp. Physiol.* 157, 263-277.

DOI: 10.1007/BF01350033

Zars T, Fischer M, Schulz R, Heisenberg M (2000). Localization of Short-Term Memory in *Drosophila. Science* 288(5466), 672-675.

DOI: 10.1126/science.288.5466.672

Websites:

https://www.crisprflydesign.org/grna-expression-vectors/

7. Index of Abbreviations

%	Percent
μ	Mikro
Δ	Delta
°C	Degree Celcius
Amp	Ampicillin
AP	Alkaline phosphatase
bp	Base pair
c	Colony
Cas	CRISPR-associated
CIP	Calf intestinal alkaline phosphatase
CRISPR	Clustered regularly interspaced short palindromic repeats
DNA	Deoxyribonucleic acid
dNTPs	Deoxyribonucleotide triphosphates
E. coli	Escherichia coli
fwd	Forward
g	Gram
8	Standard gravity
grad	Gradient
gDNA	genomic DNA
gRNA	guide RNA
h	Hour
HF	High Fidelity
kb	Kilo bases
1	Liter
LB	Luria Bertani medium
LSB	Low salt buffer
m	Mili
М	Molar
min	Minutes
ml	Mililiter

Index of Abbreviations

mod	Modification
n	Nano
р	Pico
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
pН	"power of hydrogen", negative decimal cologarithm
rev	Reverse
RNA	Ribonucleic acid
RNase	Ribonuclease
rpm	Rounds per minute
rsh	radish
RT	Room temperature
rut	rutabaga
sec	Seconds
sgRNA	single guide RNA
Т	Temperature
TAE	Tris-acetate-EDTA
Taq	Polymerase from Thermus aquaticus
tRNA	transfer RNA
U	Units
UAS	Upstream activating sequence
UV	Ultra violette
V	Volt

8. Acknowledgements

I want to thank...

... my supervisor Prof. Dr. Björn Brembs for the opportunity to do my research in his lab.

 \dots my advisor Mathias Rass for his practical and theoretical guidance and his feedback on the manuscript.

... Renate Reng, Gudrun Karch, Marcela Loza-Hilares and other lab members for the help during my time in the lab.

... my family for always supporting me.

9. Attachments

Creating gRNAs

Modifications of the gRNA creation included the change to Phusion DNA Polymerase (Mod. 1.4) with the corresponding PCR reaction (see Table 27). The PCR program (see Table 15) was altered to suit the requirements of the polymerase. This involved increasing both the extension time and final extension to 30 seconds and 5 minutes, respectively.

Component	20 µl Reaction	Final Concentration
Phusion HF Reaction	4 0 ul	1X
Buffer (5x)		171
10 mM dNTPs	0.4 µl	200 µM
10 µM forward primer	1.0 µl	0.5 μΜ
10 µM reverse primer	1.0 µl	0.5 μΜ
Template DNA pCFD6	0.5 µl	320 pg
Phusion DNA Polymerase	0.2 µl	0.4 units
Nuclease-free water	ad 20 µl	

Table 27: PCR Reaction with Phusion DNA Polymerase (Mod. 1.4).

Restriction Digest of pCFD6

Table 28: Restriction digest of 8 µg of pCFD6 (Mod. 2.1).

Component	40 µl Reaction	Final Concentration
pCFD6	variable	8 µg
rCutSmart Buffer (10x)	4.0 µl	1x
BbsI-HF	2.0 µl	40 units
Quick CIP	2.0 µl	10 units
Nuclease-free water	ad 40 µl	

Restriction digest of 5 μ g pCFD6 (see Table 29) was incubated at 37°C for 3h followed by 20 min inactivation at 65°C. Dephosphorylation was performed with Antarctic Phosphatase (see Table 30) at 37°C for 30 min and inactivated at 70°C for 5 min (Mod. 2.2).

Component	100 µl Reaction	Final Concentration
pCFD6	variable	5 µg
rCutSmart Buffer (10x)	10.0 µl	1x
BbsI-HF	5.0 µl	100 units
Nuclease-free water	ad 100 µ1	

Table 29: Restriction digest of 5µg pCFD6 (Mod. 2.2).

Table 30: Dephosphorylation of pCFD6 BbsI with Antarctic Phosphatase (Mod. 2.2).

Component	110 µl Reaction	Final Concentration
pCFD6 BbsI	93.5 µl	variable
Antarctic Phosphatase Re- action Buffer (10x)	11 µl	1x
Antarctic Phosphatase	5.5 µl	27.5 units

Double Digest of pCFD6 with HindIII and NheI

To minimize the risk of template DNA interfering with downstream applications, pCFD6 was double digested with HindIII-HF and NheI-HF (Mod. 1.5). The reaction (see Table 31) was incubated at 37°C for 3 h and inactivated with a 1% agarose gel at 100V, extracted and measured (see 3.1. Gel Electrophoresis and DNA Extraction). Aim was to decrease transformant background from template residue from gRNA creation with substituting the intact pCFD6 with a digested option.

Table 31: Double digest of pCFD6 with HindIII and NheI (Mod. 1.5).	

Component	50 µl Reaction	Final Concentration
pCFD6	variable	1 µg
rCutSmart Buffer (10x)	5.0 µl	1x
HindIII-HF	1.0 µl	20 units
NheI-HF	1.0 µl	20 units
Nuclease-free water	ad 50 µ1	

10. Declaration of authorship

The submitted printed copies and the submitted electronic version of the thesis are identical. I have written the thesis independently, have not used any sources or tools other than those indicated and have not already submitted the thesis to another university for the purpose of obtaining an academic degree. Furthermore, I confirm that I am aware of the legal consequences provided in § 27 (5) of the current examination regulations.

Die vorgelegten Druckexemplare und die vorgelegte elektronische Version der Arbeit sind identisch. Ich habe die Arbeit selbstständig verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und die Arbeit nicht bereits an einer anderen Hochschule zur Erlangung eines akademischen Grades eingereicht. Weiterhin bestätige ich, dass ich von den in § 27 Abs. 5 der geltenden Prüfungsordnung vorgesehenen Rechtsfolgen Kenntnis habe.

Date

Signatur