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Abstract 

Actions are followed by consequences, to which values are assigned. These 

subjective values shape our future actions in what we colloquially call “learning by doing”. 

But how does the assignment of values to behavioral consequences occur in the brain? In 

mammals as well as in three different superphyla within protostomes (Nematoda, 

Platyhelminthes and Mollusca) this is mediated by dopamine. However, little is known about 

the neural basis of value assignment to behaviors in the Arthropoda. In order to address 

which neurons convey punishment and reinforcement in insects, we performed four different 

experiments in which flies (Drosophila melanogaster) could control the on/off state of 

different subsets of dopaminergic neurons. We found that the effects of these neurons 

across operant (feedback) conditioning have no relation to their role observed in previously 

well studied pavlovian (feedforward) conditioning. These results suggest fundamentally 

different neuronal circuits dedicated to operant and pavlovian learning processes. The 

reinforcing value of most of the tested neurons is context dependent and differs among the 

tested operant paradigms. However, there are two exceptions: two different cell clusters 

projecting to different neuropils in the central complex (CX) and accessory regions, a brain 

area involved in multisensory integration and action selection, seem to be responsible for the 

reinforcement of motor commands in a context-independent way. These findings support a 

conserved mechanism of dopaminergic reinforcement in higher order motor centers across 

phyla.
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1 Introduction 

1.1 Neural plasticity 

Homeostatic regulation in the brain allows adaptation to a changing environment, 

which is essential for survival. Past experiences are integrated into neural processing and 

decisions are taken according to the instantaneous environmental and internal context 

(Devan et al., 2018; Margulies et al., 2005; Rescorla & Wagner, 1972.; Solanki et al., 2015). 

Decisions are probabilistically influenced by evidence accumulation, which in rodents is 

encoded in dopaminergic neurons and dorsal striatum (Graybiel, 2016; Lak et al., 2016; 

Yartsev et al., 2018) whereas in flies the αβ lobes in the mushroom bodies (MB) integrate 

evidence over time for olfactory discrimination (Groschner et al., 2018). When an individual 

interacts within its habitat, it can learn about environmental contingencies as well as from the 

outcome of its actions. These learned associations are stored as probabilities which are 

continuously updated by new information (Fiorillo et al., 2003; Nassar et al., 2010; Zhou et 

al., 2018). 

Formed associations are the scaffold for creating a model representation of the 

surrounding environment to be able to predict from past events and assess the changing 

conditions for its own adaptation (Cognigni et al., 2018; Devan et al., 2018; Heisenberg, 

2015; Li, 2014; Margulies et al., 2005; Menzel et al., 2007; Seidler et al., 2013). Error 

discrimination allows an individual to know when behavior optimization is under its own 

control (Inoue & Kitazawa, 2018; Nassar et al., 2010; Seidler et al., 2013; Wolf & 

Heisenberg, 1991; Zhou et al., 2018). That means that the brain actively evaluates the 

confidence in the formed associations and distinguishes whether unexpected discrepancies 

are due to its own motor coordination or due to environmental stochasticity. Confidence is an 

estimation of the uncertainty of the formed associations and in mammals it is is encoded by 

several neurotransmitters throughout the brain: dopamine, serotonin, noradrenaline and 

acetylcholine (Fiorillo et al., 2003; Yu & Dayan, 2005). The ability to recall past experiences 

is essential for organisms to take proper decisions. The brain has evolved to dynamically 

update value to actions and stimuli that affect fitness (Graybiel, 2016; Paton & Louie, 2012). 

This valuation is the teaching signal that leads to learning by maximizing reward and 

minimizing punishment. 

1.2 Reward and dopamine 

From the ancient Greek through the Middle Ages to modern philosophy, the meaning 

of reward and its biological relevance has attracted a lot of interest. These reflections were 
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not based on brain physiology but mostly limited to observations and behavior (Marks, 

2011). 

There are two main paradigms for studying the physiology of hedonia: self-

stimulation and conditioned place preference. The self-stimulation paradigm was developed 

by Olds and Milner in 1954 (Olds & Milner, 1954), and the idea behind this paradigm is that 

animals control the presentation of the stimulus with their own behavior. In that particular 

case, rodents could press a lever that was connected to a stimulation electrode placed in a 

certain brain region. Olds and Milner found by serendipity regions in the septal area which 

rodents would stimulate to the point of replacing other natural rewards like food 

consumption. The lateral hypothalamus, the median forebrain bundle and the dopaminergic 

mesolimbic system yielded the highest lever pressing rates (Paton & Louie, 2012; Wise, 

2002). In conditioned place preference paradigms animals are previously conditioned with 

an appetitive/aversive stimulus to avoid/approach a certain place and it generally requires 

less training in rodents (Prus et al., 2009; Simon et al., 2009). 

Although dopamine was traditionally considered to be the hedonic neurotransmitter, 

its function is much more varied. Self-stimulation experiments and locomotor activity 

measurements during differential activation of neurons expressing D1- and D2 dopaminergic 

receptors indicate that hedonic feelings share common dopaminergic and basal ganglia 

circuitry with the control of motor activity (Kravitz et al., 2012; Kravitz & Kreitzer, 2012). The 

basal ganglia are an essential center for motor control where the direct and indirect 

pathways have been traditionally seen as opposing forces for gating voluntary and 

involuntary movements. The direct pathway, mediated by dopaminergic receptors of type 

D1, increases movement and mediates positive reinforcement and reward. On the other 

hand, the indirect pathway, mediated by type D2 receptors, decreases movement and 

mediates punishment and aversion (Kravitz et al., 2012; Kravitz & Kreitzer, 2012; Paton & 

Louie, 2012; Saunders et al., 2018; Wise, 2002). 

Dopaminergic neurons in the fruit fly are also responsible for heterogeneous 

functions, including reward in different classical conditioning assays (Aso et al., 2010, 2012; 

C. Liu et al., 2012; Vogt et al., 2016). Other tasks involve locomotion, sleep/arousal 

regulation, encoding of energetic state, novelty, hunger, thirst, electric shock, etc., and 

induce learning, memory and forgetting (Aso & Rubin, 2016; Barron et al., 2010; Berry et al., 

2015; Cognigni et al., 2018; Cohn et al., 2015; Hattori et al., 2017; Hu et al., 2018; Krashes 

et al., 2009; Lin et al., 2014; Owald, Felsenberg, et al., 2015; Perry & Barron, 2013; 

Riemensperger et al., 2011; Sitaraman et al., 2015; Tschida & Bhandawat, 2015). 
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1.3 Reward Prediction Error (RPE) 

Past experiences confer an animal the ability to predict rewards in order to anticipate 

its behavior. Wolfram Schultz and colleagues observed that the firing activity in 

dopaminergic neurons of the ventral tegmental area (VTA) and the substantia nigra pars 

compacta was proportional to unexpected rewards (Keiflin & Janak, 2015; Ljungberg et al., 

1992; Montague et al., 1996; Schultz, 2016; Schultz et al., 1993, 1997). These neurons 

encode the difference between the predicted and the obtained reward, known as reward 

prediction error (RPE), which resembles the proposed teaching signals from older 

reinforcement learning models (Bush & Mosteller, 1951; Rescorla & Wagner, 1972.; Sutton 

& Barto, 1981; Pearce & Hall, 1980). RPE is also encoded in the anterior cingulate cortex , 

amygdala, globus pallidus and caudate nucleus (Belova et al., 2007; Ding & Gold, 2010; 

Hong & Hikosaka, 2008; Seo & Lee, 2007), whereas a region closely interconnected with the 

VTA, the habenula (Hb), signals punishment prediction error (Kumar et al., 2018; Tian & 

Uchida, 2015). Interestingly, the Hb is one of the main centers encoding relief and RPE in 

zebrafish, as in mammals, it works tightly with the dopaminergic system to build RPE (Li, 

2014). Along with other vertebrates, RPE neurons in Drosophila are also dopaminergic 

(Cohn et al., 2015; Felsenberg et al., 2017; Galili, 2014; Keiflin & Janak, 2015; König et al., 

2018; Riemensperger et al., 2005) whereas in the honey bee, the octopaminergic VUMmx1 

has shown dynamic reward-predictive firing properties (Perry & Barron, 2013). 

The relevance of timing is openly reflected by the RPE, and explains phenomena like 

punishment relief signaling, where a stimulus that occurs at the end of punishment can be 

appetitive (Gerber et al., 2014; König et al., 2018; Tanimoto et al., 2004). Trace and relief 

conditioning studies in Drosophila point to a widespread coding of salient stimuli (Aso & 

Rubin, 2016; Hattori et al., 2017; Heisenberg, 2015; Hige, Aso, Modi, et al., 2015; Hige, Aso, 

Rubin, et al., 2015; Konorski, 1948; Vogt et al., 2015; Zieliński, 2006). In mammals, the 

amygdala and the medial prefrontal cortex might use their interconnection with the VTA to 

encode absolute prediction errors or saliency (Mackintosh, 1975; Nasser et al., 2017; Pearce 

& Hall, 1980). 

RPE underlies an essential neuronal correlate of learning: being able to predict 

indicates that associative learning has occurred before. The ubiquitous RPE correlates 

throughout the brain indicate that the brain is a huge associative machine and emphasizes 

the relevance of associative learning as a universal and essential mechanism for survival. 

RPE is necessary for memory reevaluation and reconsolidation by comparing previous 

associations with current ones (Cognigni et al., 2018; Donahoe & Burgos, 2000; Felsenberg 

et al., 2017). 
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There are two main types of learning: associative and non-associative. Associative 

learning is the process where relationships between events are captured and embodied in 

synaptic plasticity. Associative learning can be further subdivided in: classical/pavlovian- and 

operant/instrumental conditioning. 

1.4 Pavlovian/Classical and Operant/Instrumental conditioning 

Classical conditioning was firstly described by Ivan Pavlov (I. P. Pavlov, 1928; P. I. 

Pavlov, 2010). In his experiments he bestowed dogs with food preceded by a bell tone. After 

learning, the dogs started salivating upon the preceding bell tone even when no food was 

presented, thus anticipating the food reward. Classical conditioning describes the process 

where an organism captures the relationship between two external stimuli that are 

contingent on each other. The conditioned stimulus (CS), in this case the bell tone, whose 

meaning is neutral to the individual, acquires after co-presentation the value of the 

unconditioned stimulus (US), in this case the food reward. Hence, when an US is presented 

frequently enough with a CS, the subject elicits a conditioned response (CR) upon CS 

occurrence. 

Classical conditioning consists of a feedforward process where the contingent 

sensory stimuli lead to a behavioral response. During operant conditioning the occurrence of 

behavioral and sensory events are reversed, initiating behavior bias the incoming sensory 

stimuli. Hence, operant learning is conceptually different in that behavioral outcomes serve 

as a basis to modify behavior which implies that the subject actively controls the sensory 

feedback, allowing to direct its cognitive resources (e.g. attention) to it (Brembs & 

Heisenberg, 2000; Brembs, 2008; Brembs, 2000, 2009; Heisenberg & Wolf, 1993; Wolf & 

Heisenberg, 1991). 

Alexander Bain (1865) claimed that in our constant search for pleasure, certain 

spontaneous behaviors would increase their frequency. Herbert Spencer and James Mark 

Baldwin would develop the idea of reward-based learning until Thorndike, who showed 

empirical studies of trial-and-error learning in animals (1898), introduced the law of effect in 

1911 (Marks, 2011). Thorndike applied the word instrumental because behavior would be 

instrumental to achieve rewards, whereas Skinner (1938) would deploy the term operant 

because behavior would operate on the environment. Contrary to many behaviorists who 

would try to reconcile both associative learning types in a unifying principle, Skinner made a 

sharp distinction between operant (emitted) behaviors and respondent (elicited) behaviors 

(Marks, 2011). Skinner emphasized that operant conditioning strengthened responses and 

not stimulus-response bonds, which was ambiguously explained by the law of effect (Marks, 

2011). 
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Innumerable studies have behaviorally characterized operant and classical 

associative memories in the fruit fly. The neural substrates of classical conditioning have 

been extensively unraveled, pointing to the MB as the main center for classical conditioning 

(Aso et al., 2012; Aso, Hattori, et al., 2014; Aso, Sitaraman, et al., 2014; de Belle & 

Heisenberg, 1994; Claridge-Chang et al., 2009; Kirkhart & Scott, 2015; Lin et al., 2014; C. 

Liu et al., 2012; L. Liu et al., 1999; Mao & Davis, 2009; Margulies et al., 2005; Musso et al., 

2015; Perisse et al., 2013; Pidoux et al., 2018a; Schwaerzel et al., 2003; Vogt et al., 2014; 

Waddell, 2013). In the operant counterpart, an extensive behavioral characterization of the 

different components of operant conditioning has laid the groundwork to address the 

neuronal mechanisms (Brembs, 2000, 2009a, 2009b; Heisenberg, 2015; Heisenberg & Wolf, 

1993; Wolf & Heisenberg, 1991). The MB gate the progression from goal directed to habitual 

behaviors (Brembs, 2009a, 2009b) whereas in mammals this is accompanied by the activity 

transition from the dorsomedial to the dorsolateral striatum (Fino et al., 2018; Graybiel, 2016; 

Graybiel & Grafton, 2015; Thorn et al., 2010). However, the study of the neural correlates of 

operant behavior in Drosophila has been mostly limited to the mechanisms of sensorimotor 

transduction, recognizing the circuits eliciting behaviors (Cande et al., 2018; Giraldo et al., 

2018; Lindsay et al., 2017; Namiki et al., 2018; Namiki & Kanzaki, 2018; O’Sullivan et al., 

2018; von Philipsborn et al., 2011; Robie et al., 2017). The genetic components of operant 

learning in the fruit fly have been only partially identified, with a particular focus on dFoxP 

and PKC (Brembs & Plendl, 2008; Colomb & Brembs, 2016; Kottler et al., 2019; Mendoza et 

al., 2014). However, not that much is known about how punishment and reinforcement 

signaling converge to influence action selection. 

Vocal learning is a well-known operant learning process in juvenile songbirds where 

the learn to coordinate vocal cords and muscles to imitate the adult song. Pharmacological 

and lesion experiments together with anatomical findings have characterized the brain 

regions involved in vocal learning. The cerebellum carries out a supervised error-based 

learning whereas the striatum involves the reinforcement system. These two regions interact 

with thalamocortical loops and brainstem circuits to coordinate proper motor output. This 

mechanism applies to other motor tasks and shows close resemblance to what is observed 

in other vertebrates (Jarvis, 2007; Manto et al., 2012; Pidoux et al., 2018b; Seidler et al., 

2013). 

In Aplysia, the biting behavior has been used as a model for the comparison of 

classical and operant conditioning mechanisms. Pairing tactile stimulation of the lips (US) 

with seaweed (US) leads to an increased biting frequency (CR). Concomitantly, the 

stimulation of the anterior branch of the esophageal nerve (En2) after every bite induced a 

sustained biting increase. Interestingly, En2 releases dopamine in the neuron B51 to induce 
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differential biophysical changes for both, operant and classical procedures (Bédécarrats et 

al., 2013; Brembs et al., 2002; Lorenzetti et al., 2006; Nargeot et al., 2009). In the zebrafish 

Danio rerio there is not much known yet but calcium imaging experiments during operant 

learning suggested that the lateral Hb and the pallium in the forebrain code for pain relief 

and prediction error (Li, 2014). 

Reinforcement is essential for learning by narrowing the behavioral options to the 

more adaptive ones. In a changing environment this can be sometimes detrimental and the 

brain has therefore developed a strategy of increasing behavioral variability (Brembs, 2000; 

Wolf & Heisenberg, 1991). Comparing the consequences of different behaviors allows the 

brain to infer and discriminate the contingencies better. Thus, exploration of a wider 

behavioral space tends to form a more accurate internal representation and better 

generalization (Dhawale et al., 2017; Grunow & Neuringer, 2002; Hansson & Neuringer, 

2018; Perry et al., 2010). Exploration can be reinforced and used as a reinforcer and 

curiosity might be a natural mechanism to drive exploration (Grunow & Neuringer, 2002; 

Hansson & Neuringer, 2018; Marks, 2011; Neuringer & Huntley, 1992). 

1.5 Pure operant learning 

Since its implementation by Olds and Milner (Olds & Milner, 1954), lever pressing 

experiments have been very popular for studying operant learning in rodents. However, 

these experiments contain a mixture of learning types, where not only the action of lever 

pressing is contingent on reward (“pure operant”), but also the physical event and associated 

cues accompanying the instrument (e.g. the lever going down, or apparatus noise, that might 

work as a CS). In an individual internal model, the paired bond might not necessarily be 

between behavior-reward but with the descending lever-reward, since a descending lever 

might be a better predictor of reward. Elegant experiments in fruit flies sharply dissected an 

operant paradigm in two different learning processes: world- and self-learning. The former 

referring to the bonds between sensory stimuli with the paired reward and the latter referring 

to the coincidence detection of ongoing motor programs and reinforcement (Brembs, 2000, 

2011). In these fly experiments, during composite training which resembles lever pressing 

experiments, only CS-US is memorized by the fly in detriment of the behavior-reinforcement 

(B-R) bond. Further experiments showed that behavioral consequences are easier to retain 

when no other external cues are present. On the contrary, the CS-US memory is stronger 

when flies control the presentation with their behavior. This reveals an asymmetry where 

world-learning is facilitated by behavioral control of the environment whereas the presence 

of contingent sensory cues impair self-learning. Thus, lever pressing experiments resemble 

composite experiments where the CS-US association prevails over the B-R bond simulating 
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rather classical conditioning experiments. Disregarding this relevant facts has often led to 

operant paradigms that are vaguely measuring B-R associations. (Brembs, 2000, 2011; 

Heisenberg & Wolf, 1993; Wolf & Heisenberg, 1991). 

1.6 Drosophila as a laboratory model: optogenetics 

About three fourths of human disease associated genes can be found in the fruit fly, 

making Drosophila a suitable model to study (Chien et al., 2002; Fortini et al., 2000; Pandey 

& Nichols, 2011). The relatively simple nervous system of this insect allows us to understand 

in more detail how specific circuits achieve certain tasks. In addition, short life cycle and the 

relatively easy maintenance make this model attractive for research.  

The introduction of the P-element-mediated gene transfer allowed the development 

of a vast set of genetic tools, permitting sophisticated experimental manipulations in 

Drosophila melanogaster (O’Kane & Gehring, 1987; Rubin & Spradling, 1983). In the last 

years, CRISPR/cas9 has become a major cloning strategy (Bassett & Liu, 2014). 

The GAL4-UAS system was cloned from the yeast into Drosophila melanogaster, 

allowing the spatial control of the transcription of desired genes. In this method GAL4, a 

transcriptional activator, can be be expressed under different promoters and enhancers to 

yield a specific expression pattern. The Gal4-protein binds specifically to the Upstream 

Activation Sequence (UAS), which regulates the expression of an effector protein (Brand & 

Perrimon, 1993). Further variants of this system like split-G4s, MARCM and flip out 

techniques provided an even more accurate expression profiles (Luan et al., 2006; Pfeiffer et 

al., 2010; Xie et al., 2018). Many effectors have been developed to manipulate neuronal 

activity through temperature (Hamada et al., 2008; McKemy et al., 2002; Peier et al., 2002), 

drug administration (Sternson & Roth, 2014) or light (Boyden et al., 2005; Nagel et al., 2002, 

2003). The latter technique, known as optogenetics, is the method chosen for this study due 

to its temporal resolution and decreased side effects.  

Channelrhodopsins are light gated channels that were discovered in green algae in 

Regensburg in 2002 (Nagel et al., 2002, 2003), which were consequently further developed 

as a neuronal activation tool (Boyden et al., 2005). Since their discovery, the biophysical 

properties of these channels have been optimized according to the purposes of the scientific 

community. Channelrhodopsins consist of a protein channel core with its C-terminal 

covalently bonded with all-trans-retinal (ATR), a chromophore (Kato et al., 2012). When light 

hits on the chromophore, it leads to 13-cis-retinal, that induces a conformational change of 

the channel, making it permeable to cations, specially calcium. 



 
 
 

13  Introduction 

 

Neuronal activity recording and imaging adds supplemental versatility for fly 

research, as well as anatomical tracing techniques like electronic microscope reconstruction 

and synaptically targeted GFP reconstitution across synaptic partners (GRASP) (Feinberg et 

al., 2008; Macpherson et al., 2015; Owald, Lin, et al., 2015). Concomitantly, recent 

technological advancements and a more openly shared distribution of resources have 

allowed higher quality research with more sophisticated analysis algorithms and high 

throughput experiments. 

1.7 Aim of the study 

The scope of this study was to find neuronal substrates for operant reinforcement 

(fig. 1). Subpopulations of dopaminergic neurons were screened for their reinforcing 

properties in four different operant paradigms. All experiments resembled self-stimulation 

paradigms where naive flies were in control of the neuronal activation by light.  

We focus on dopaminergic neurons for several reasons: 

• Evolutionary: in mammals the dopaminergic mesencephalic nuclei projecting to the 

basal ganglia and medial prefrontal cortex encode the teaching signals (Montague et 

al., 1996; Olds & Milner, 1954; Schultz et al., 1997). In birds, as in mammals, the 

basal ganglia encode the reinforcing signals, indicating that dopamine might be 

involved (Pidoux et al., 2018b). In Aplysia, dopamine is the learning signal involved in 

classical and operant conditioning (Brembs et al., 2002; Lorenzetti et al., 2006). In 

nematoda, platyhelminthes and crustaceans dopamine is involved in conditioning 

(Barron et al., 2010; Datta et al., 2018). In Drosophila dopamine substitutes the US 

and contains projections to important premotor areas like the central complex (CX) 

and the lateral accessory lobe (LAL) (Aso et al., 2010, 2012; C. Liu et al., 2012; 

White et al., 2010). 

• Technical: the availability of a vast number of dopaminergic promoters for driving the 

expression in specific neuronal subsets, as well as the volume of literature on the 

effects of dopaminergic manipulation gives an excellent and extensive background 

framework to this study. 
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Figure 1. Circuit schematics from classical conditioning vs operant behavior. A: In olfactory classical 
conditioning the kenyon cells (KC) receive and convey olfactory input whereas dopaminergic neurons (DANs) 
provide contextual information and serve as an US. DANs consequently modify KC-MB output neurons synaptic 
strengths to trigger the behavioral output. B: Hypothetical learning mechanism for behavior: DANs projecting to a 
region where motor programs are selected, change synaptic strengths to increase/decrease a certain behavior 
(active neurons are shown in red). 
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2 Methods 

2.1 Fly genetics 

In our experiments we avoided additional contingencies other than that of the 

reinforcement with the fly behavior: to avoid visual cues from the stimulating light that would 

interfere with our reinforcement scores, we genetically blinded flies with a mutated no 

receptor potential A gene (norpAP24). norpA encodes for phosphatidylinositol-specific 

phospholipase C that is involved in several sensory pathways, which mutation can impair 

vision completely (Hardie et al., 2003; McKay et al., 1995; Pearn et al., 1996; Shen et al., 

2011). In addition, norpAP24 decrease olfactory discrimination (Riesgo-Escovar et al., 1995) 

and impair temperature discrimination at temperatures between 18°C and 26°C (Collins et 

al., 2004; Glaser & Stanewsky, 2005; Shen et al., 2011). This overall reduced sensory 

sensitivity is optimal to avoid the world-learning effects and to strictly measure self-learning, 

the “pure” operant learning component. 

CsChrimson was the effector chosen for neuronal activation (Klapoetke et al., 2014), 

whereas GtACR1 and GtACR2 were deployed for inhibition experiments (Mohammad et al., 

2017). Phasic stimulation activates neurons more effectively than tonic stimulation (Inagaki 

et al., 2014), therefore the light stimulation was pulsed. 

2.2 Fly care and reagents 

Males containing a dopaminergic GAL4 (table S2) driver line were crossed to 

norpAP24;20xUAS-CsChrimson virgin flies and kept them in standard cornmeal and molasses 

food media in darkness at 25°C and 70% humidity for egg laying. One to six days after 

hatching, groups of approx. 30 male offsprings were put in small glass vials with all-trans-

retinal (ATR) supplementation for two days before testing. In mammals, retinal precursors 

are naturally produced in the brain whereas this is not the case in insects. Therefore, fly food 

is supplemented with ATR for the deployment of optogenetics. The ATR supplementation 

was accomplished by applying 15µl of 200mM ATR dissolved in ethanol to the food surface 

for intake. All the flies were fed with ATR to yield a functional light-gated channel (unless 

otherwise specified). In mammals, retinal precursors are naturally produced in the brain 

whereas this is not the case in insects. Therefore, fly food is supplemented with ATR for the 

deployment of optogenetics. 

For each setup a previous test with a negative and a positive control was performed 

to confirm that the setup was working properly. Concomitantly, a positive control was always 

tested during the screen to check that the setup was working reliably across periods of days. 
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Light parameters were calibrated until the positive control showed a robust effect size 

relative to the negative control. 

norpAP24;20xUAS-CsChrimson and norpAP24;Gr28bd+TrpA1>Chrimson were the 

negative and positive controls, respectively. Only in the red lit T-maze a different positive 

control was deployed, norpAP24;Gr66a>Chrimson, which expresses CsChrimson in bitter 

taste neurons and its activation has been shown to be aversive (Aso, Sitaraman, et al., 

2014). The combination of Gr28bd with TrpA1 drivers showed stronger phenotypes than 

Gr66a in our experiments and therefore was used for further screens. Whereas Gr28bd 

expresses in the hot cells in the arista of the antennae, TrpA1 expresses in the heat 

sensitive neurons in the inner brain AC neurons (Galili et al., 2014; Geffeney, 2017).  

Light was measured with a lux meter (table S1) which was calibrated and 

transformed from lux into µW/mm² with the following scripts: 

https://github.com/chiser/light_conversion/blob/master/lux2watts.R (fig. S1). To confirm that 

the light spectrum specified in the light source data sheet matched the real light spectrum, 

the stimulation light was with the spectrometer (table S1). This was necessary because 

materials such as light guides or T-maze tubes might modify the light spectrum when the 

light travels across them. A list of the lines used in this study is available in table S2. 

2.3 T-maze 

The T-maze was composed of a core and three insertable tubes. The core contained 

an elevator for transfering the flies from the entrance tube to the choice tubes, where they 

had two options: approach the dark arm or the arm with the optogenetically stimulating light 

(fig. 2). LEDs were adjusted for the light stimulation with a frequency generator and a power 

supply (table S1). LEDs were glued to a cooling plate to avoid overheating. 

Whereas CsChrimson is sensitive to yellow and red light, GtACR1 and GtACR2 are 

both sensitive to blue and green light. Two activation screens, one with red- and another with 

yellow light, were performed (fig. 2). One additional experiment was performed with blue light 

to inhibit neurons that showed robust reinforcement across all paradigms. The light 

intensities were 1600 lux, 1000 lux and 2500 lux for the red- (660nm), yellow- (590nm) and 

blue (480nm) lit T-maze experiments respectively. The rest of the parameters were the same 

for the three T-maze experiments: 10ms pulse width, 20Hz stimulation frequency and 9.9ms 

cycle duration with 1ms delay. 

 

 

https://github.com/chiser/light_conversion/blob/master/lux2watts.R
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Figure 2. T-maze schematics. A: Thirty or more flies were introduced in the entrance arm for the experiment. By 
tapping the T-maze, flies were introduced into the elevator, which then was shifted to a middle point for 30 
seconds for the adaptation of the flies. B: The elevator was then pushed all the way down, letting the flies move 
freely within the choice arms. After one minute, flies in each arm were tallied under CO². 

The same groups of flies were tested in two consecutive days for the screen with red 

light as well as in the inhibition experiments with GtACRs. Since the counting was done 

under CO², and CO² exposure is detrimental for the flies, a day for recovery was left before 

the second experiment (Barron, 2000; MacAlpine et al., 2011; Perron et al., 1972). 

Experiments with the yellow light were conducted without repetition and blindly by two 

experimenters in parallel, to obtain an estimation of the handling variability. 

2.4 Y-mazes 

The setup consisted of a behavioral box with a rig (30x35cm) with 120 Y-mazes. The 

rig was backlit with an IR LEDs panel (table S1) and a diffuser to scatter light 

homogeneously (as in Buchanan et al., 2015; Werkhoven et al., 2019). In each Y-maze, a 

single fly could freely explore the three arms, one of which was illuminated with the 

optogenetically stimulating light (fig. 3). 

The positive control showed the strongest phenotypes at 80% and 100% of the 

maximum projector light intensity, therefore the light intensity was set to its maximum. Light 

was set at [1 0 0] (RGB code) and its spectrum ranged from 570nm to 720nm with a peak at 

595nm. Light stimulation frequency was set at that of the projector (75Hz), and sampling 
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frequency was set to 37.5 Hz, half of the refresh rate of the projector (table S1), to avoid light 

display inaccuracies. The duty cycle was 50%. 

 

Figure 3. Y-mazes setup schematic. The behavioral box below with a zoomed-in view of a single Y-maze. The 
enlarged Y-maze contains the arm number as well as a red dot to simulate the stimulation light. A PC processed 
the camera recording online and commanded the projector for closed-loop feedback. The experiment protocol 
consisted of a total of 60 minutes test where each of the arms was reinforced for 20 minutes by displaying light 
on the arms whenever the fly entered the given arm. 

Fly behavior was recorded with a digital camera and further processed with 

background subtraction in Matlab (Mathworks) to obtain simultaneous tracking of the 120 

flies. A 850nm long pass filter (table S1) was placed in front of the camera to avoid 

interference of the stimulating light in the tracking. 

All the Matlab scripts were run under the Matlab 2015a version in Windows 7. The 

projector stimulation patterns were designed with Psychtoolbox-3 toolbox 

(http://psychtoolbox.org/) with its third-party dependencies and an Nvidia graphic card. 

Closed loop stimulation with the projector demand enough spatial resolution to 

display light in specific Y-maze arms. This required the pixels of the projector to match those 

on the camera, for which the projector displayed a black and white pattern on a white 

surface that was consequently captured by the camera. By knowing the coordinates of the 

projected patterns and recording these patterns with the camera, the corresponding camera-

projector pixels were registered. For every calibration procedure, at least an R²=0.9998 in 

the projector-camera pixels correlation was accomplished (approx. pixel precision).  

http://psychtoolbox.org/
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Acquisition software scripts & parts list: https://github.com/chiser/autoTrackerV2-old-version- 

Registration scripts: https://github.com/chiser/Registration-Camera-Projector. 

Y-mazes video example: https://www.youtube.com/watch?v=S8uVpEOMojU. 

2.5 Joystick 

Tethered flies are positioned on a flexible platform that measures their leg postural 

lateral force (fig. 4). For the tethering, a piece of 0.7mm diameter fishing line (table S1) is 

glued on the dorsal side of the thorax, which is used to fix the fly to a clamp. A light guide 

attached to the clamp collects and directs the stimulating light to the fly head. The fly is 

carefully positioned with micromanipulators on the platform and inspected for proper motor 

activity. A photoelectric barrier detects the platform position and sends an analog signal (-5 

to +5V) to the Analog-Digital converter.  

 

 

Figure 4. Joystick schematics. In a spaced training protocol, we alternate open- (green) and closed loop (blue) 
four-minute periods. In the closed loop/reinforcement period flies are trained by turning on the stimulating light 
when the fly pushes the platform to a specified side. The experiment protocol lasts for 20 min with alternating 4 
min segments of Pretest, Training, Test, Training, Test as shown in the figure. The reinforced side (right/left) was 
alternated at each consecutive experiment. 

The closed loop stimulation is gated by a microcontroller (Arduino Uno). Light guides 

are glued to the LEDs on one end and straight fixed next to the clamp directed to the fly 

head. The stimulating light intensity was 400 lux, 20 Hz, 50 ms pulse width and no cycle 

delay. The data acquisition software is custom written in Visual Basics (Microsoft) with a 20 

https://github.com/chiser/autoTrackerV2-old-version-
https://github.com/chiser/Registration-Camera-Projector
https://www.youtube.com/watch?v=S8uVpEOMojU
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Hz sampling rate. As in the T-maze with yellow light, the fly line identity was blinded to 

experimenters to avoid ad hoc bias. The experiment was conducted by two experimenters in 

parallel. 

Joystick example video: https://www.youtube.com/watch?v=z2uOIVYrC0o. 

The instructions sheet with the software scripts by Johann Schmid (modified from 

Mariath, 1985; Wolf et al., 1992): https://github.com/chiser/Joystick-acquisition-software. 

2.6 Data analysis 

Since the raw data format was different for each experiment, data was differently 

analyzed to obtain a score that allows comparison across setups. Hence, every score 

ranges from -1 to +1, where negative scores indicate light avoidance, positive scores 

approach, and close to zero scores indicate no preference for the light. For the T-maze we 

calculated a preference index: 

𝑃𝐼 =
𝑥 − 𝑦

𝑥 + 𝑦
  (1) 

where  are the number of flies in the light and  the number of flies in the dark. The 

flies that did not make any choice and stayed in the middle were not considered in the 

formula for two main reasons: locomotor deficits would impair the flies approaching any of 

the arms and thus not show their preference and It is questionable whether the light intensity 

in the middle is over the activation threshold for CsChrimson. From the single experiment 

PIs we calculated an arithmetic mean and a weighted mean: 

𝑃𝐼̅̅ ̅ =
∑ 𝑃𝐼𝑖

𝑛
𝑖=1

𝑛
 

 (2) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝐼̅̅ ̅ =
∑ 𝛽𝑖𝑃𝐼𝑖

𝑛
𝑖=1

𝑛
  

 (3) 

Where  is the total number of experiments and  denotes a weight proportional to 

the number of flies that took part in the experiment (normalized to yield a mean of 1). For the 

Y-mazes we had different time-stamped measures: speed, arm location and arm entry for 

which ratios were calculated. Only flies with at least 14 turns/arm changes were used for the 

analysis and speed was downsampled through window average to 3.75Hz to reduce noise.  

𝑆𝑝𝑒𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑥 − 𝑦

𝑥 + 𝑦
  (4) 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝑥 − 𝑦

𝑥 + 𝑦
  (5) 

https://www.youtube.com/watch?v=z2uOIVYrC0o
https://github.com/chiser/Joystick-acquisition-software
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𝐸𝑛𝑡𝑟𝑖𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑥 − 𝑦

𝑥 + 𝑦
  (6) 

where  refers to mean speed, time spent, and number of entries in the lit arm for the 

three equations respectively whereas  refers to the mean of the mentioned parameters in 

the dark arms, respectively. For the Joystick we calculated the PI for each of the experiment 

periods by: 

𝑃𝐼 =
𝑥 − 𝑦

𝑥 + 𝑦
  (7) 

where  is the number of data points in the lit side and  the number of data points in 

the dark side. We averaged all of the Reinforced periods PIs and subtracted pretest PI, to 

normalize for the intrinsic bias. In addition, we measured the platform wiggle as a proxy for 

locomotor activity:  

𝑤𝑖𝑔𝑔𝑙𝑒 =  ∑ |
𝑑𝑥

𝑑(𝑡 − 20)
|

𝑁

𝑛=1

 
 (8) 

where  is the time-stamped platform position and  the time stamps. The time series 

was differentiated with a lag of 20 to capture the wiggle at a slower time scale that 

corresponded more closely to the fly behavior. We subtracted the wiggle scores during lights 

off to when lights were on, obtaining a ratio that is positive when flies move more during 

neuronal activation, and vice versa. 

Power analysis was only performed for the T-maze with yellow light and the Joystick 

screens to predetermine the sample size. We performed a one-tailed t-test for the positive 

against the negative control, where the power was set to 80% and the significance to 0.05. 

The estimated number of experiments for the T-maze was eight, however, since we 

expected smaller effect sizes for our experimental lines, we decided to do 12 experiments 

per line. For the Joystick the power analysis resulted in 15 experiments, and due to the time 

limit constraints, we kept it at 15 experiments for each line. 

Most of the analysis and plotting was done in R version 3.4.2 (https://www.R-project.org) 

except for the analysis for the Y-mazes that was done in Matlab 2015a (Mathworks). 

Analysis scripts URLs: 

- Power analysis: https://github.com/chiser/power-analysis  

- Y-mazes: https://github.com/chiser/matlab-analysis-on-operant-reinforcement 

- Joystick: https://github.com/chiser/screen-analysis-for-yellow-Tmaze-and-Joystick. 

https://www.r-project.org/
https://github.com/chiser/power-analysis
https://github.com/chiser/matlab-analysis-on-operant-reinforcement
https://github.com/chiser/screen-analysis-for-yellow-Tmaze-and-Joystick


 
 
 
Methods  22 

- T-maze: https://github.com/chiser/T-maze-drosophila/tree/master/Tmaze 

Tmazeplottingrepetitions.r was used for the screen with red light.  

Tmazeplotting.r was used for the screen with yellow light.  

All data acquisition software and analysis scripts are available at https://github.com/chiser. 

All raw data can be found at https://doi.org/10.7910/DVN/RETZPG. 

2.7 Neuronal clusters valence estimation 

Linear models were performed to solve a system of equations with one equation per 

tested line. Neuronal clusters valence were the unknown variables which were weighted by 

the corresponding expression level from the given line, whereas the behavioral score is the 

response variable. Different model combinations were tested: bayesian versus frequentist, 

linear versus nonlinear, with- versus without interactions. Whereas in linear models the effect 

is proportional to the expression level, in nonlinear models we fitted nonlinear basis functions 

to the relation expression-effect. 

Complex models tend in general to overfit the data, hence goodness of fit that takes 

model complexity into account, like Akaike Information Criteria (AIC), Deviance Information 

Criteria (DIC) and Bayesian Information Criteria (BIC) were chosen. Bayesian methods were 

prioritized due to their robustness to overfitting. 

Analysis scripts can be found in:https://github.com/chiser/estimating-dopaminergic-clusters-

valences/blob/master/modelling_scores.Rmd. 

2.8 Anatomical characterization 

GAL4 lines were crossed with w-;6xUAS-20xGFP flies. Fly brains were fixed in 4% 

paraformaldehyde for 2hs at 4°C, placed on microscope slides and mounted with antifade 

mounting medium (VectashieldⓇ). Image acquisition was performed with a Leica SP8 

confocal microscope. Images were scanned at a frame size of 1024x1024 pixels with a 40x 

oil immersion objective. Confocal stacks were viewed and analyzed using the ImageJ 

software. Only general adjustments to contrast and brightness were made. Anatomical 

identification was accomplished with the help of the Virtual Fly Brain website 

(www.virtualflybrain.org).  

https://github.com/chiser/T-maze-drosophila/tree/master/Tmaze
https://github.com/chiser
https://github.com/chiser
https://doi.org/10.7910/DVN/RETZPG
https://github.com/chiser/estimating-dopaminergic-clusters-valences/blob/master/modelling_scores.Rmd
https://github.com/chiser/estimating-dopaminergic-clusters-valences/blob/master/modelling_scores.Rmd
http://www.virtualflybrain.org/
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3 Results 

3.1 Driver lines expression analysis 

Since the GAL4s were obtained from different studies, some focusing on classical 

learning (Aso et al., 2010, 2012; Aso, Hattori, et al., 2014; Aso, Sitaraman, et al., 2014; C. 

Liu et al., 2012) and some on sleep/arousal (Galili et al., 2014; Q. Liu et al., 2012; Pathak et 

al., 2015), two different expression tables were generated. The former contains driver lines 

with their soma at the paired anterior medial cluster (PAM) and paired posterior lateral 1 & 

2ab clusters (PPL1 and PPL2ab) projecting to the MB compartments (fig. 5A), whereas the 

latter contains dopaminergic lines with broader projection sites (fig. 5B). 

 

Figure 5. Dopaminergic driver lines expression pattern. On the Y-axis are the driver line names and on the X-
axis each of the targeted neuronal clusters can be found. DANs are depicted by their projection sites and their 
cell body location (within brackets). Colorbar at the right-hand side shows normalized expression intensity from 
zero to one. A: Driver lines obtained from Aso et al. 2010, Aso et al. 2012, Aso et al. 2014 with their 
corresponding expression pattern. B: Driver lines from Liu et al. 2012. The expression pattern was estimated 
from the following studies: Liu 2012, Galili 2014 thesis, Pathak 2015.  

Bearing in mind that protocol variations for immunohistochemistry yield different 

expression patterns, a summary of several studies was produced to find a consensus for the 

expression values for the broader expressing driver lines (fig. 5B). For a more detailed 

description of the generation of these driver lines see Supplemental Information in Liu 2012.  
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3.2 T-maze screen with red light 

As explained in the methods section, a pilot experiment was performed where the 

positive control, norpAP24;Gr66a>Chrimson, was tested with and without ATR 

supplementation. As expected, the negative PI scores indicate light avoidance of the positive 

control and therefore indicate that the setup is functioning as expected (fig. 6).  

Although we reared between 30 and 40 flies in each experimental glass, due to the 

handling some of the flies would not survive or would escape the test. Hence, there was a 

fluctuating number of flies taking part in each experiment. To test whether different numbers 

of flies affect the PI, a weighted PI, where the contribution to the final score was directly 

proportional to the number of flies that took part of the experiment, was calculated. A sharp 

correlation between weighted and unweighted PI analysis (r=0.99; adj. R²=0.95; p=2.43-15) 

indicated that weighting the PI made no difference to the result. The standard PI was chosen 

for further analysis, favoring simplicity since this is not detrimental. 

 

Figure 6. T-maze screen. Barplots depict each driver line means for each behavioral score in descending order 
with error bars depicting the standard error of the mean (SEM). Positive controls fed with and without ATR are 
coloured in dark- and light blue respectively. Number of experiments for each line is shown above each driver line 
label in the X-axis. Driver line fonts are color coded according to classical learning phenotypes as shown in the 
legend above. All lines contained a norpAP24 mutation which is omitted in the X-axis for simplicity. 
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The T-maze experiment with red light was performed twice for each group of flies to 

observe choice consistency between both tests (fig. 6). If flies chose differently every time 

they are exposed to the T-maze, one would not expect to find any correlation between first 

and second experiment. However, if flies developed a fixed preference for a certain neuronal 

activation, the first and second set of experiments should yield similar results. Two different 

analyses were performed on the correlations between the two tests: one across the means 

for each driver line, and another correlation retaining the identity of each single experiment. 

For the former we found a correlation (r=0.55; adj. R² =0.55; p= 3.1-5), which indicates that 

the effects are consistent at the population level. However, for the latter there was no 

correlation (adj. R² = 0.02), suggesting that the effects are rather probabilistic and therefore 

difficult to observe in single experiments due to high decision variability. 

To have an estimation of the effect of genetic background in our paradigm, the 

negative controls were bred in different stocks for several generations during approximately 

one year. Very soon after separating stocks, the fly genetic background tends to accumulate 

modifications that lead to divergence (Colomb & Brembs, 2014). A pilot experiment showed 

no effect of the genetic background in this assay. More details from these experiments are 

found in http://lab.brembs.net/2015/11/lab-report-optogenetics-a-screening-with-the-

channelrhodopsin-chrimson/. 

3.3 T-maze screen with yellow light 

Since the wavelengths corresponding to yellow light activate CsChrimson more 

effectively, an additional T-maze screen was performed with yellow light (Klapoetke et al., 

2014). The effect of octopaminergic neurons in approach/avoidance assays is dependent on 

stimulation parameters like frequency and intensity (Gerbera, 2018). Hence, differences 

between this screen and the red-lit T-maze experiments shown in the previous section might 

indicate if the same neurons can encode different information under different activation 

characteristics (fig. 7, table S3). As in the T-maze with red light, the positive control, in this 

case norpAP24;Gr28bd+TrpA1>Chrimson, showed a strong light avoidance, as expected, in 

the pilot experiments (results in http://lab.brembs.net/2018/06/tmaze-experiments-initial-

results/). 

Are the PIs of different lines influenced by their basal locomotor differences? This is 

relevant because different genetic backgrounds affecting locomotion might also influence the 

performance in a spatial task like this one. Movement is a necessary requirement for the flies 

to show their preference in the T-maze and moving less might for instance lead to more/less 

extreme scores. Since the starting point is the elevator, the amount of flies in the elevator at 

the end of the experiment was considered as a proxy for locomotor deficits. No correlation 

http://lab.brembs.net/2015/11/lab-report-optogenetics-a-screening-with-the-channelrhodopsin-chrimson/
http://lab.brembs.net/2015/11/lab-report-optogenetics-a-screening-with-the-channelrhodopsin-chrimson/
http://lab.brembs.net/2015/11/lab-report-optogenetics-a-screening-with-the-channelrhodopsin-chrimson/
http://lab.brembs.net/2018/06/tmaze-experiments-initial-results/
http://lab.brembs.net/2018/06/tmaze-experiments-initial-results/
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was found between the measured PIs and the number of flies in the elevator at the end of 

the experiment (adj. R²= -0.038), suggesting that basal locomotion does not influence T-

maze scores.  

 

 

Figure 7. T-maze screen with red light. Barplots depict each driver line means for each behavioral score in 
descending order with error bars depicting the standard error of the mean (SEM). Positive control is coloured in 
blue. Number of experiments for each line is shown above each driver line label in the X-axis. Driver line fonts 
are color coded according to classical learning phenotypes as shown in the legend above. All lines contained a 
norpAP24 mutation which is omitted in the X-axis for simplicity. 

Since the yellow-lit T-maze screen was performed in parallel by two different 

experimenters, it was interesting to see if there is consistent effect across experimenters. A 

correlation analysis showed no significance (adj. R² = 0.0086; p= 0.292 for linear correlation, 

and p=0.546 for Spearman´s rank correlation), indicating that overall, the yellow light creates 

no consistent effect on neuronal activation. To address whether the lack of consistency is 

due to the absence of effect size or due to a context-dependent effect further analysis was 

performed in sections 3.3.1 and 3.6. 
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3.3.1 Negative-effects screen simulation 

T-maze experiments with negative controls were pooled (blind flies, either with only 

effector or only with any GAL4 driver), summing up to a total of 49 experiments. The overall 

PI was not different from zero (fig. S2A). By sampling 12 times with repetitions from the 

experimental pool we can compare the obtained PI distribution to that of our T-maze 

experiments. The sampling with repetitions seems to be reasonable because of its 

unlikelihood in a real population of changes in the probability of an event after the 

occurrence. Fig. S2B shows the result of 32 bags of 12 samples, simulating the yellow light 

T-maze screen. Sampling from this null-effect fly line yield scores closer to zero, compared 

to the yellow lit T-maze screen (fig. 6B; fig. S2B). The presence of more extreme PIs in fig. 7 

out of the range of the null effect lines suggests that neuronal manipulations in the yellow-lit 

T-maze certainly modify the choice biases. 

3.4 Y-mazes Screen 

This high throughput setup allowed to measure many single flies and to test more 

lines than in other setups.  As explained in methods, it consists of a rig with Y-shaped mazes 

where single flies can choose to be in any of the three arms, one of which is illuminated with 

red light for optogenetic activation. As for the previous screen, the positive controls showed 

strong avoidance of the light (Werkhoven et al., 2019). The occupancy rates from this screen 

are shown in fig. 11. 

Arm entries might be a favorable measure for valence because it is locomotion-

independent and shows an active decision to self-stimulate. An initial experiment with non-

blinded flies revealed occupancy-entries positive correlation whereas the addition of 

norpAP24 particularly obscured the entries effects, indicating that flies rely on their vision to 

navigate through the maze (Werkhoven et al., 2019). Furthermore, arm entries rate did not 

show any correlation to occupancy rate in the performed screen (adj. R² = 0.07; p=0.046), 

nor to speed (adj. R² = 0.052; p= 0.082) neither at the population level nor at the single lines 

(fig. S3). Although the presence of norpAP24 was a major hindrance for the flies to navigate, 

the positive correlation of entries and occupancy in seeing flies indicates that occupancy 

rates are a good proxy for valence. Moreover, occupancy rate is more similar to T-maze PI, 

where its locomotory effects cannot be separated from its valence. 
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Figure 8. Results from the operant behavior screens. Barplots depict each driver line means for each 
behavioral scores in descending order with error bars depicting the standard error of the mean (SEM). Positive 
controls fed with and without ATR are coloured in dark- and light blue respectively. Number of experiments for 
each line is shown above each driver line label in the X-axis. Driver line fonts are color coded according to 
classical learning phenotypes as shown in the legend above. All lines contained a norpAP24 mutation which is 
omitted in the X-axis for simplicity. 

A tight inverse correlation between occupancy and speed rates (r=-1.57, adj. R² = 

0.94, p= < 2.2-16) indicate that flies that avoided the lit arm also tend to run faster in this arm 

and vice versa. To investigate whether neuronal activation directly induced effects in walking 

speed, yoked experiments were carried out. Yoked experiments consist of a paired 

experiment where one individual controls its own feedback as well as that for the paired 

individual. This allows the former individual to learn from behavioral outcomes whereas this 

is not possible for the latter individual. Thus, half of the flies were tested with one of the arms 

lit, whereas the other half of the flies received light stimulation according to the ubication of 

the paired fly rather than based on their own ubication. These results unambiguously reveal 

that neuronal activation changes walking speed (fig. S4). In summary, neuronal activation 

induces changes in occupancy and speed. Running more in a specific Y-maze arm might 

lead to leaving that arm sooner, thus affecting occupancy scores. However, experiments in 
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non-blinded positive controls reveal that neuronal activation has a valence effect that is 

independent of locomotion. 

3.5 Joystick screen 

In contrast to the previous paradigms, in the Joystick flies are tethered, which might 

facilitate the measure of a locomotion-independent valence (fig. 9). To avoid handling biases 

we corrected the training PI by subtracting the pretest PI from it (as explained in Methods). 

Reinforcement PIs with and without pretest normalization were only slightly correlated (adj. 

R²=0.10; p=0.059), indicating that pretest biases have a strong effect in reinforcement 

scores. 

 

Figure 9. Results from the Joystick screen. Barplots depict each driver line means for each behavioral score 
in descending order with error bars depicting the standard error of the mean (SEM). Positive control is coloured in 
blue. Number of experiments for each line is shown above each driver line label in the X-axis. Driver line fonts 
are color coded according to classical learning phenotypes as shown in the legend above. All lines contained a 
norpAP24 mutation which is omitted in the X-axis for simplicity. 

For assessing the correlation between locomotion and valence, as it was done for 

previous setups, a correlation analysis between wiggle and reinforcement scores was 

carried out. Contrary to the Y-mazes, there was no correlation locomotion-valence and 

hence it is a paradigm suitable for segregating these two features (wiggle versus normalized 

reinforcement adj. R²=0.01; p=0.27). 



 
 
 
Results  30 

3.6 Context-dependency: Effect on the mean and variance 

All the results from the performed screens were uncorrelated (fig. 10; table S3 for 

statistics). The reason behind this could be: either these neurons do not encode for 

reinforcement, or the reinforcement is context-dependent and thus, effects vary across 

setups. To address this, we analyzed how much these phenotypes deviate from zero for 

each line and compared them to the negative controls. 

 

Figure 10. Double comparison between operant behavior paradigm scores. A-F: Eight combinations of 
biplots projecting two behavioral axes. Axes ranges were truncated to -0.4 to +0.4 for visualization purposes. 
Legend on the right, with colours indicating classical learning phenotypes and a corresponding symbol for each 
driver line. Only lines that were tested in both paradigms are shown in the graphs. 

If the neuronal manipulation has no effect, one would expect close to zero variance 

across experiments for all the lines tested. This variance will only be dependent on the 

noise, which should in principle affect all lines to the same degree. However, if the 

manipulation has an effect, we would expect an increment of this value proportional to its 
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effect size. Interestingly, our negative control, TH-G4+TH-G80, never showed extreme 

phenotypes in any of the four screens performed, contrary to the two positive controls, 

Gr28bd+TrpA1 and Gr66a (fig. 11). 

Since context-dependent behavior shows variable phenotype, activation of these 

neuronal populations might not shift overall means but variance across paradigms. Hence, 

we expect the lines with higher scores in fig. 11 to be the more influenced by the situation. 

 

Figure 11. Mean absolute phenotype score across the four operant paradigms. Lines are ordered from 
higher to lower absolute phenotype. These scores consist of an average of the unsigned behavioral scores for 
each fly line. Dark blue are positive controls and light blue positive controls without ATR supplement. 

3.7 Context-independent reinforcers 

Previous analysis indicated that reinforcement is predominantly influenced by the 

context. However, our interest lies in the neuronal manipulations that produce consistent 

effects, that is, the general reinforcers. We focused on lines with big phenotypic effects and 

balanced contribution from each experiment. TH-D', TH-D1 and TH-G1 were the only lines 

with consistent avoidance/attraction across the four tests (fig. 12). Unfortunately, not all lines 

were tested in all setups due to different technical reasons. Considering that only lines with 
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four consistent results were chosen, some interesting lines might have been missed, which 

is a major setback of this study. Nevertheless, this data is still valuable to select promising 

candidate lines in more detail in the future. 

 

Figure 12. Superimposed barplot with the driver line scores for each experiment. On the Y-axis the 
corresponding score unit for each paradigm in arbitrary units. On the X-axis the driver lines tested across all 
screens. Note that not all lines were tested in all paradigms for different reasons. Legend below left show colours 
attributed to each paradigm score.  

3.8 Estimation of the valence of dopaminergic clusters 

We created a model with the lines broadly targeting dopaminergic clusters (fig. 5B) to 

have a numerical estimate of the valence of these populations. The overall behavioral score 

from the previous section was chosen as the response variable, since it combines data from 

the four screens, emphasizing the effect of consistent lines. AIC, DIC and BIC are relative 

values for goodness of fit, therefore one cannot consider them alone but in comparison with 

other models. Models without interactions yielded lower AIC/DIC/BIC scores, supporting the 

idea that the effect of these neurons is exclusively additive (fig. 13B). 
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Since neurons often work in a nonlinear fashion (Benda et al., 2010; Birman, 2005; 

Zhang et al., 2013), we modelled them with nonlinear basis functions. Using a general 

additive model (GAM; gam function in R) and linear models (lm function in r) yield the same 

goodness of fits, probably because GAM failed to fit nonlinear basis functions to the linear 

model variables (fig. 13B). We therefore assume that the effect of these neurons is approx. 

proportional to the expression level. Allowing ourselves to compare AIC and DIC equally, 

bayesian models fitted slightly better than frequentist models (fig. 13B). Considering adj. R² 

is an absolute fit score where approx. one would be a perfect score, an adj. R² of 0.3 seem 

to be a low score. This means that these models are probably not capturing properly the 

behavior of these neurons or, the measured effect of these neurons is very noisy. 

 

 

Figure 13. Valence estimation of major dopaminergic neuronal clusters. A: On the Y-axis the major 
dopaminergic clusters and on the X-axis the valence scores in arbitrary units (a.u.). The dots represent posterior 
means with 95% credible intervals bars. B: Different goodness of fit values for the different models tested. The 
lower the AIC/BIC/DIC value, the better the trade-off information-overfitting. Note that some of the fields are 
empty because the R function would not calculate these. bayesglm: bayesian general linear model; gam: general 
additive model; lm: linear model; MCMCglmm: Markov Chain Monte Carlo general linear mixture model. 

All valence estimates credible intervals were overlapping with the zero line. Thus, we 

could not be be certain of any neuronal effect. The low adj. R² suggests that the effects 

might not have been captured by our model. Hence, only focusing on the interesting lines 

might give a better characterization for reinforcement neuronal correlates, which we will deal 

with in the next section. 
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3.9 Anatomical characterization of the context-independent 
reinforcers 

Interestingly, the three lines of interest highlighted the same regions although it was 

not possible for us to assure if they labeled the same neurons (fig. 14). Morphological 

features at the light microscope-level resolution are often insufficient to distinguish cell types 

and additional information about synaptic connectivity and genetic expression profiles are 

necessary to fully define cell identity (Wolff & Rubin, 2018). The cell bodies labelled 

belonged mostly to dopaminergic clusters PPL1 and PPM3. TH-D1 and TH-D’ labelled 

additionally PPM1 cluster neurons that project to the ventrolateral protocerebrum (White et 

al., 2010). Unfortunately, different microscope settings during image acquisition did not allow 

comparison for absolute intensity, and we therefore compared intensities relative to other 

brain areas. 

 

 

Figure 14. Staining of the brain regions for reinforcement. GFP staining for TH-D’ (A), TH-D1 (B) and TH-G1 
(C). The cell clusters and neuropils (bold italics) are in white. PPL: paired posterior lateral; PPM: paired posterior 
medial; dFB: dorsal fan-shaped body; vFB: ventral fan-shaped body; LAL: lateral accessory lobe; vMB: vertical 
lobes of the mushroom bodies. Scale bar = 50µm.  

At the neuropil level, the three lines labeled specific layers in the FB. The PPM3-vFB 

(2-4 layers) and noduli was particularly intense for TH-D’ and TH-D1. Unfortunately, the 

penetration of our anti-nc82 antibody, used to mark synaptic regions, was not enough to 

distinguish subdomains in central brain regions. We believe that TH-G1 stains a more medial 

layer, maybe fifth or sixth. An additional FB layer from the PPL1-dFB projection, was stained 

by all the drivers. The signal in the ellipsoid body (EB) is stronger in TH-G1 and TH-D1 

whereas the LAL is targeted in all lines (fig. 14). TH-G1 stained conspicuously what we 

believe is the prow, located within the subesophageal zone. The MB vertical lobes and 

pedunculus projection from the PPL1 was clearly distinguishable in the three lines. TH-D1 

had more unspecific targets whose effects are not known.  



 
 
 

35  Results 

 

3.10 Optogenetic inhibition of dopamine neurons 

To gain more insights into the physiology of the reinforcement candidate neurons we 

performed an additional experiment with two of the candidate lines: TH-D’ and TH-D1. 

Instead of letting the flies choose whether they want to depolarize neurons with CsChrimson, 

this time they had to choose whether they want to hyperpolarize the neurons with gtACR (fig. 

15). 

Flies expressing inhibiting channelrhodopsins, gtACR, in TH-D’ neurons, chose to 

approach the light. Thus, whereas TH-D’ activation is avoided (fig. 6-10; fig. 12) its inhibition 

is appetitive (fig. 15), depicting a preference for reduced activity for these neurons. 

Interestingly, flies with TH-D1>gtACR, which approached light in activation experiments, also 

did so in inhibition experiments. In this case, the neuronal inhibition as well as the activation 

was chosen by the flies.  

  

 

Figure 15. Preference for inhibition of context-independent reinforcers and punishers. Barplot indicating 
the mean score with error bars the standard error of the mean (SEM). In blue the negative controls and in grey 
the experimental lines. On the Y-axis, a positive PI indicates approach to light and hence, preference for 
inhibition. Number of experiments for each line depicted above the fly line names. 
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4 Discussion 

4.1 The neural circuits underlying classical and operant 
conditioning  

4.1.1 The role of the MB 

The MB are the major center where gustatory, olfactory and visual classical 

conditioning takes place, with a strong predominance of olfaction (Aso et al., 2010; Kirkhart 

& Scott, 2015; Vogt et al., 2016). This is supported by the anatomy, since abundant olfactory 

input converges into the MB calyx. The other major input constitutes dopaminergic neurons, 

which project to the MB lobes. Their activity encodes internal states and values of sensory 

cues shaped by the instantaneous circumstances and previous experiences (Aso, 

Sitaraman, et al., 2014; de Belle & Heisenberg, 1994; Hige, Aso, Modi, et al., 2015; Hige, 

Aso, Rubin, et al., 2015; Ito et al., 1998; Mao & Davis, 2009; Schwaerzel et al., 2003; 

Takemura et al., 2017; Waddell, 2013; Yao Yang et al., 1995). So far, no motor-related 

inputs have been found for the MB which suggests that the MB might not be a structure for 

motor plasticity and operant learning. Hence, circuits for both associative learning types are 

probably segregated. In this study, all the driver lines projecting to the MB showed no robust 

reinforcement value across paradigms (fig. 5A; fig. 10; fig. 12), which supports this idea. The 

markedly sensory input into the MB implies a specific role for classical conditioning. Within 

the MB, the reciprocal interconnection of DANs, KCs and MB output neurons in every 

combination complicates the oversimplified classical view of KCs and DANs transmitting 

feedforward information to the MB output neurons (Takemura et al., 2017). This suggests 

that not only CS-US associations take place in the MB but also CR-CS and CR-US 

associations, whose roles are still not fully elucidated. 

4.1.2 Reinforcer versus Unconditioned stimulus 

The MB seem to gate the transition from goal-directed to habitual behavior. In section 

1.5 a few representative interactions of classical and operant conditioning were 

demonstrated. These intricate interaction between classical and operant learning 

components foreshadow bidirectional projections, direct or indirectly, between the MB and 

regions involved in operant conditioning. Hence, despite its conceptual distinction, operant 

and classical conditioning frequently interact in natural environments. Flies can recognize in 

a complex environment the effect of different predictors in order to obtain reward. 

Interestingly, flies can learn that B-R contingencies only hold in the presence of a specific 

environmental cue (Brembs & Plendl, 2008). Behavior and sensory cues are potential 

predictors of the reward and searching the temporal contingencies in sensory signals in the 

wrong moments could reduce the efficiency of behavior-outcome associations. Adding 
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contextual cues can yield better learning to the detriment of poor generalization (Brembs, 

2000, 2011, 2009a; González et al., 2003; Rescorla, 1994; Wolf & Heisenberg, 1991). The 

dilemma of whether a common formalism can be applied to operant and classical 

conditioning has been a discussed issue over many years and only recently started to clarify 

(Brembs, 2000, 2011; Gormezano & Tait, 1976; Hebb, 1956; Heisenberg & Wolf, 1993; 

Rescorla, 1994; Rescorla & Solomon, 1967; Skinner, 1935, 1937; Wolf & Heisenberg, 1991).  

In our paradigms we observed that neurons that have shown robust effects in 

classical learning did not necessarily reinforce spontaneous behavior in the same way, that 

is, reinforcement evoked by dopaminergic neurons has no relation to their role as an US in 

classical conditioning (fig. 6-10; fig. 12). These findings emphasize that, in addition to the 

segregation of behavior and stimuli as predictors, reinforcement and US should be 

equivalently teased apart. This implies the need to deploy different terminology for these two 

learning types in order to rigorously describe segregated mechanisms. Here we accentuate 

that the combinations of positive/negative punishment/reinforcement should be strictly 

deployed in operant situations whereas appetitive/aversive US should refer to classical 

conditioning. Conceptually this means that behavior, reinforcement, CS and US should be 

referred as different entities that might interrelate according to the situation. In fact, stimuli 

like heat have shown to punish and act as an aversive US at the same time (Galili et al., 

2014; Wolf & Heisenberg, 1991). A different aversive US, electric shock, is signalized in two 

different pathways, the MB and the FB, which might indicate that different structures convey 

different learning types (Galili et al., 2014; Hu et al., 2018; Perry & Barron, 2013). 

Contrary to what is seen in the fruit fly, Aplysia´s feeding behavior can be classically 

as well as operantly conditioned by the same dopaminergic neuron En2, which hints at a 

shared operant-classical associative circuit. The esophageal nerve En2 targets B51, a 

decision-making neuron for eliciting feeding. Operant and classical conditioning induce 

differential changes in the biophysical properties of B51 which indicates that the signal 

segregation occurs at the cellular level (Brembs et al., 2002; Lechner et al., 2000; Lorenzetti 

et al., 2006). 

Therefore, the brain might come up with different mechanisms to segregate operant 

from classical learning. Dedicating different signaling pathways within the same cell might 

explain how the same circuits could accomplish different functions polivalently and in 

parallel. In general, organisms with less number of neurons compensate by deploying their 

neurons more polivalently, which might explain why in Aplysia both conditioning types occur 

in the same circuit. Interestingly, in the adult fruit fly, Protein Kinase A (PKA) pathway is 

necessary for classical learning whereas PKC signaling pathway is essential for operant 

learning, however it is not clear if these pathways overlap in the same neurons (Brembs & 
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Plendl, 2008; Colomb & Brembs, 2016). Based on our findings that different neuropils seem 

to be required for operant reinforcement and classical learning, both pathways might take 

place in different neurons. 

4.2 Reinforcement substrates in Drosophila melanogaster 

Different motor programs might share overlapping reinforcement substrates. 

However, the absence of relationship across the performance of fly lines in the different 

operant paradigms do not support a shared reinforcement circuitry for the performed tasks 

(fig. 10, table S3). This is striking if we consider the case of both T-maze screens, where 

flies were exposed to the same conditions except for the light stimulation. The differences 

between both T-maze experiments suggest that these neurons might be sensitive to the 

stimulation patterns. Gerbera 2018 showed that attraction/aversion effects in specific 

octopaminergic neuronal clusters were dependent on intensity and/or frequency. It is also 

possible that the real correlations of shared sparse circuits might be obscured by the many 

driver lines that did not show any effect and thus, added noise to the correlation.  

Our approach/avoidance paradigms also permitted us to find other reinforcers that 

are independent of the context. The ubication of these neurons in central brain regions 

suggest a more general reinforcement system (fig. 5, fig. 14), yet further tests should 

elucidate what kind of reinforcement these neurons encode. We identified three fly lines 

encoding a generalized reinforcement: TH-D’ for punishment and TH-D1 and TH-G1 for 

positive reinforcement (fig. 12). The expression pattern of TH-D’ can be compared to those 

of the other two driver lines in two different ways: 1) the set difference, that is the regions 

that distinguish them, and 2) the intersection, that is the regions they share in common. 

Interestingly, the model in section 3.8 exploits the regions that are differentially expressed to 

explain the behavioral scores and the low adj. R² obtained, is indicative of a very modest fit 

(fig. 13B), which suggests that the set difference might not explain the reinforcement scores. 

An alternative strategy would be to inspect the intersection, that is the common regions 

expressed. In this case, the lines expressing in the common regions, are expected to have 

the more extreme reinforcement/punishment effect sizes. We will therefore focus on 

common regions expressed by the three candidate lines. 

Fig. 5B and fig. 14 depicts PPL1 and PPM3 populations as the common regions 

targeted by the context-independent reinforcement lines. Since other lines with PPL1-MB 

projections (fig. 5A) did not show consistent reinforcement, only PPL1-dFB projections could 

explain the reinforcement effect from lines expressing in the PPL1 cluster. The PPL1-dFB 

projection, stained by the three drivers, has a main role in sleep regulation (Jeffrey M. 

Donlea et al., 2014; Q. Liu et al., 2012; Nguyen, 2017; Qian et al., 2017). If we compare the 
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staining patterns of all driver lines tested (fig. 5), these three share a very similar pattern, 

which suggest these common regions might mediate the observed positive reinforcement 

and punishment. 

The projection PPM3-vFB (2-4 layers) and noduli were particularly intense for TH-D’ 

and TH-D1. vFB, which consist of layers 1 to 5, is highly responsive to electric shock and 

nociceptive heat and mediate innate avoidance, which explains the avoidance behavior in 

TH-D’. Interestingly, electric shock signal is also relayed to the MB by dopaminergic neurons 

and their manipulation does not affect acute avoidance (Aso, Sitaraman, et al., 2014; Cohn 

et al., 2015; Galili et al., 2014; Hu et al., 2018; Schroll et al., 2006; Schwaerzel et al., 2003; 

Waddell, 2013). TH-G1 might stain a layer from mFB (fifth or sixth), but our nc82 

counterstaining did not penetrate the tissue enough to confirm this. In addition to avoidance, 

the FB is reported to be important for other functions, including locomotion control (Strauss, 

2002), visual feature recognition (Liu et al., 2006) and processing (Weir & Dickinson, 2015), 

courtship maintenance (Sakai & Kitamoto, 2006), quiescence regulation (Berry et al., 2015; 

Donlea et al., 2011; Ueno et al., 2012) sleep homeostasis (Qian et al., 2017). 

The EB and LAL are, together with the FB, the most outstanding regions labelled by 

these three driver lines (fig. 14). The EB encodes heading orientation and feature detection 

with the corresponding associated memories (Seelig & Jayaraman, 2015; Strauss, 2002; 

Wolff et al., 2015). Dop1R1 signaling in the EB ring neurons affect the temporal organization 

of motor actions, exploration and turning behavior (Kottler et al., 2019). Hence, the 

dopaminergic projections might reinforce different behaviors by biasing the action selection 

process in the ring neurons of the EB. Manipulating specific dopaminergic inputs into the ring 

neurons might show differential effects. The EB and the FB, as the other CX structures (PB 

and No), show a strikingly compartmentalized layout with restricted connections, which 

suggest a high degree of functional specialization (Wolff et al., 2015; Wolff & Rubin, 2018). 

Hence, dopaminergic projections to the CX and LAL might be topographically organized to 

differentially drive avoidance and approach (Hu et al., 2018; Wolff et al., 2015). The structure 

and function of the CX and LAL is quite conserved across insect’s species. They process 

spatial aspects of complex multisensory information and integrate it with information about 

the insect's internal state and past experiences, to drive proper motor outputs (Buchanan et 

al., 2015; Hu et al., 2018; Namiki et al., 2018; Namiki & Kanzaki, 2016, 2018; Seelig & 

Jayaraman, 2015; Strauss, 2002; Wolff et al., 2015; Wolff & Rubin, 2018).  

The LAL is the major output site of the CX and its bilateral coordinated activity 

mediates signals to the thoracic motor centers. The LAL is closely interconnected with other 

CX structures but it also receives input from AOT, SMP, Lobula Plate, PS and thoracic motor 

centers. In addition, the LAL receives ascending feedback about proprioceptive information 
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to coordinate downstream motor commands in locomotion, flight, phonotaxis and pheromone 

orientation in several insects. The characteristic flip-flop signals observed in the LAL and 

downstream DNs are correlated with turning maneuvers and its role seems to be 

locomotion-biased, which points to this region as a major candidate where reinforcement 

might converge (Namiki et al., 2018; Namiki & Kanzaki, 2016, 2018; Wolff et al., 2015; Wolff 

& Rubin, 2018). 

In the search for candidate lines for reinforcement we sought lines that showed a 

consistent behavior across the four paradigms (fig. 12). Interestingly, none of the lines 

projecting to the MB stood out. Emphasizing the anatomical commonalities and differences 

from our candidate lines (TH-D’, TH-D1 and TH-G1), we outlined putative regions encoding 

reinforcement (fig. 16). We hypothesize that topographically organized dopaminergic 

projections (PPL1 and PPM3) into the CX and LAL allow the convergence of motor 

programs and reinforcement. 

If the neuronal targeting by the GAL4-UAS system can only be coarser than the 

topographical organization of the reinforcement system, only a model exploiting 

commonalities might yield effective results. It is suggested that the implementation of a 

similar model to fig. 13 for a test with more specific GAL4s, labelling only PPM3 and PPL1-

dFB subpopulations, could show the topography of reinforcement within these clusters. 

Concomitantly, optogenetic inhibition experiments revealed that flies prefer to inhibit 

neurons targeted by the TH-D’ driver when they have the opportunity to do so (fig. 15), which 

agrees with the previous result that neuronal activation is avoided (fig. 12). On the other 

hand, flies have shown a preference for the activation of TH-D1 positive neurons, as well as 

a preference of the neuronal inhibition (fig.15). An explanation might be that the baseline 

state of TH-D1 neurons is punishing and any disturbance that bias activity away from this 

baseline might lead to a preference state. In fact, it has been shown that only at optimum 

levels of the dopamine receptor  1 (DopR1) in the EB leads to appropriate action selection 

(Kottler et al., 2019). 
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Figure 16. Identification of the brain regions for reinforcement. A: Template of a posterior brain section with 
a few representatives of PPL1 and PPM3 cell bodies colored. B: Brain section template highlighting a few 
representatives of PPM3 and PPL1 projections into the LAL, EB, No, vertical lobes of the MB, and SMP. C: Brain 
section template depicting a few epitomes of PPL1 and PPM3 projections into the FB, SMP and ventrolateral 
protocerebrum (vlpr). blue: superior medial protocerebrum (SMP), light brown: crepine, green: lateral accessory 
lobe (LAL), purple: fan-shaped body (FB), orange: Noduli (No). 

4.3 Centralized versus distributed behavioral control 

In the previous sections we glided over the anatomy of reinforcement and observed 

that several of the tested lines contribute to reinforcement. Thus, reinforcement might be 

broadly encoded by the dopaminergic system. RPE signal, a neural correlate of associative 

learning, can be ubiquitously found in the brain. In fact, previous models already postulated 

a distributed associative memory storage without implying a locationalistic theory of memory 

(Allport, 1985; Sutton & Barto, 1981).  

Allport (Allport, 1985) advocated the distributed nature of brain physiology, supported 

by the observations from lesion studies, where they often resulted in partial impairments and 

not total impairments of specific brain functions. Allport claimed that, alluding hebbian 

plasticity, neurons that fire together frequently, potentiate their connections yielding in an 

auto-associative network, what he calls an engram (Allport, 1985). 

Karl S. Lashley’s unsuccessful efforts to find an engram led him to conclude that 

memory is not located in specific regions but rather distributed throughout the brain (Bruce, 

2001). However, Thompson discovered that the lateral interpositus nucleus (LIP) activity in 

the cerebellum is necessary for the eyelid CR in rabbits and thus, it might be the region 

where the association occurs (Devan et al., 2018). In recent “capture” studies, fear-

conditioned freezing response was recovered by activating a neuronal ensemble from the 

hippocampus and amygdala. Other brain areas such as the striatum and the cerebral cortex 

are also involved in memory engram formation and retrieval, in what seems to be a more 

distributed associative circuit than previously thought (Bruce, 2001; Devan et al., 2018; X. 

Liu et al., 2012, 2014; Ramirez et al., 2015; Redondo et al., 2014; Tonegawa et al., 2015).  

https://en.wikipedia.org/wiki/Karl_S._Lashley
https://en.wikipedia.org/wiki/Striatum
https://en.wikipedia.org/wiki/Cerebral_cortex
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Hunting these engrams might depend on the nature and complexity of the memory. A 

general consensus is that certain memory types may be contained in specific regions in the 

brain whereas more complex and multifaceted memories are likely to be distributed (Gerrig 

& Zimbardo, 2005). The octopus seems to share this idiosyncrasy in motor circuits, where 

the more brain regions which are simultaneously stimulated, the more behavioral complexity 

is observed (Zullo et al., 2009). Whereas studies mostly focused on engrams for episodic 

memories, less is known for other memory types. Our interest lies in behavioral engrams, if 

they exist as such, since knowing about their location might facilitate the understanding of 

regions and mechanisms of reinforcement. 

Descending control mechanisms in invertebrates bear similarities to that of 

vertebrates. Drosophila has a large behavioral repertoire but only around 0.5% of all neurons 

control the full range of movements (Orlovsky et al., 1999). Recent efforts combining artificial 

activation of neurons with high throughput ethomics allowed screening the effects of the 

triggering behaviors of many brain regions: some with transient and others with steady 

behavioral effects (Cande et al., 2018; Robie et al., 2017). 

Artificial activation of neurons in the fruit fly does not deterministically trigger a certain 

behavior but rather changes the transition probabilities according to the current state, once 

again showing the relevance of the instantaneous context (Cande et al., 2018). Often, 

descending neurons trigger very specific commands constrained to small behavioral spaces 

and might therefore be a likely target for reinforcement. Combinatorial activity of descending 

neurons might lead to high variety of motor commands, similar to what is seen in the 

octopus, where the more regions stimulated, the more complex behaviors elicited. 

Interestingly, motor regions in the octopus do not have a central topographical organization 

but are distributed over wide regions (Berman et al., 2014, 2016; Bidaye et al., 2014; von 

Philipsborn et al., 2011; Zullo et al., 2009). 

A few projections from the brain relayed via descending interneurons are important 

for both the initiation and modulation of central pattern generators (CPG) activity for goal-

directed behavior. With the help of sensory/proprioceptive signal, and its modulation by 

descending pathways, CPGs coordinate motor sequences with temporal precision (Bidaye et 

al., 2018). During fast movements, central mechanisms can control the CPGs effectively 

without the need of feedback, yet increasing behavioral variability (Bidaye et al., 2018). This 

modular and hierarchical architecture is supported by the dynamic analysis of high resolution 

ethograms in the fruit fly (Berman et al., 2014, 2016; Namiki et al., 2018; Namiki & Kanzaki, 

2018; Wolff et al., 2015). 
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Even reflexes, the most fixed behaviors, can be conditioned in mammals (Wolpaw, 

1997, 2018) as well as in insects (Gorostiza et al., 2016; Martin et al., 2015). The current 

model claims that the brain and the spinal cord negotiate a balance between flexibility and 

stability for the tuning of motor commands (Wolpaw, 2018). 

The behavior-anatomy correlation maps in the fruit fly indicate that different 

behavioral circuits are located in different brain regions (Robie et al., 2017). How can 

reinforcement adjust circuits coordinated throughout the brain? One possibility is that 

specific reinforcement signals are dedicated to each behavioral circuit, however, this solution 

might be costly. The other option is to have a central reinforcement system that controls the 

major motor centers, delegating more intricate adjustments to downstream areas like CPGs. 

The dopaminergic neurons deployed in this study are located in higher cognitive 

brain areas (Aso et al., 2010, 2012; Aso, Hattori, et al., 2014; Q. Liu et al., 2012; White et al., 

2010) (fig. 5; fig. 14) and descending signals from the CX in the insect brain can modify and 

trigger walking patterns. Hence, the projection from the PPL1 and PPM3 to major motor 

areas like the CX and the LAL supports the idea of a centralized reinforcement of motor 

commands, affecting the action selection process (Bidaye et al., 2018; Namiki et al., 2018; 

Namiki & Kanzaki, 2018; Robie et al., 2017; Wolff et al., 2015). Operant conditioning 

experiments in flies suggest that flies try to achieve a desired state through behavioral action 

selection. This point of view suggest that reinforcement should occur at this higher level to 

guide goal-directed behavior. The difference from the instantaneous to the desired states 

might serve to inform the reinforcement system to assign values to motor actions (Brembs, 

2000; Wolf & Heisenberg, 1991; Wolf et al., 1992). 

In vertebrates, reinforcement-based learning occurs in the striatum whereas the 

cerebellum is dedicated to a reinforcement-free motor skill tuning (Fino et al., 2018; Graybiel, 

2016; Graybiel & Grafton, 2015; Pidoux et al., 2018b; Thorn et al., 2010). If we imagine that 

the reinforcement system in Drosophila is an archetype for the vertebrate counterpart, the 

striatal reinforcement-based learning could be accomplished by the dopaminergic 

projections to the CX and LAL in insects. In fact, Strausfeld and Hirth (Strausfeld & Hirth, 

2013) alleged several genetic, anatomical and physiological parallelisms to endorse the 

homology of nigrostriatal pathways of mammals with the PPL1/PPM3-CX/LAL pathways in 

insects. Moreover, the descending neurons would connect this central system to the CPGs, 

a region involved in tuning weights for more skilled maneuvers, analogous to the cerebellum. 

Dopamine also modulates the control of pattern-generating interneurons associated with 

movement in mollusks and crustaceans (Hills, 2006). Additional motor tuning could occur 

directly in downstream regions (e.g. CPG, LAL or posterior slope), for single muscular 

commands, but whether this involves reinforcement-based or reinforcement-free learning is 
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not known. For fine motor skills, intricate coordination of different muscles requires the 

recruitment of many neurons, where reinforcement could act in situ.  

Reinforcement might be able to reinforce at different levels of the hierarchy, in fact, 

neuroanatomy in the fruit fly larva shows that there is a complex multilevel multimodal 

convergence architecture enabling selective tuning to combinations of cues (Ohyama et al., 

2015). Experiments with decapitated cockroaches and locusts show that  there is a high 

degree of local control of leg movements by segmental ganglia and that not all 

proprioceptive control of the leg needs to ascend the brain (Horridge, 1962). Concomitantly, 

operant conditioning of the vertebrate H-reflex shows that even the simplest learning is 

accompanied by plasticity at multiple sites allowing compensatory changes to incorporate 

new behaviors without affecting older behaviors (Wolpaw, 1997). Although reinforcement 

was found to occur centrally through dopamine, further research at other levels in the 

hierarchy might show a multilevel reinforcement system. Alone the dopaminergic projections 

to several neuropils from the CX and LAL might reinforce different aspects of motor 

programs. 

4.4 Operant activity versus conditioning 

Wolf 1991 proposed a conceptual framework of operant behavior: firstly, it requires a 

goal which deviates from the actual state, which prompts the initiation of motor programs 

whose outcomes inform about the deviation from the goal. During the search for predictors, 

attempting certain behaviors over others in order to reach a preferred state in different 

situations suggests that initiating activity is essential to achieve a desired state. Motor 

programs are selected to modify the sensory input in the direction towards the goal. 

Consistent control of biological important stimuli to achieve the goal, that is operant activity, 

may drive to a lasting behavioral change, namely, conditioning. This implies that conditioned 

preferences are preferred states rather than modified motor patterns. Whereas operant 

activity occurs as soon as the operant contingencies can be captured by the animal, long 

lasting modulation of the behavior does not necessarily need to occur (Brembs, 2000; Wolf & 

Heisenberg, 1991; Wolf et al., 1992). In the Joystick paradigm, positive controls showed 

operant activity and conditioning, however our interesting lines did not show discernible 

results. Future experiments with more effective protocols should elucidate this. 

Interestingly, in previous versions of this setup with heat beams used to reinforce 

left/right platform positions, operant conditioning was not detectable although operant activity 

was. Mariath (Mariath, 1985) claimed that although it is not behaviorally exhibited the 

association might be stored. Evidence of memory in operant conditioning was proven 

through the effect of a training session on the performance of further training, that is, a 
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previous exposure to the training contributed to a faster learning (Mariath, 1985; Wolf et al., 

1992). Natural and complex learning tasks are easier to solve than the more artificial, single-

association tasks, and they need less familiarization training. The joystick might not be a 

natural behavior and it provides only a single contingency, thus, it might be more difficult to 

store in the long term. In the flight simulator flies can avoid a heat beam with the yaw torque 

which proves the relevance of the task for manifestation of the operant lasting effects. 

However, the yaw torque operating an attractive odor does not show the conditioning effect. 

In this case, although the task is the same (yaw torque), the reinforcement is different. In 

summary, all these experiments suggest that the combination of both, behavioral task and 

reinforcement feedback type, determine whether the conditioning would show up after 

operant activity (Brembs, 2000; Wolf & Heisenberg, 1991; Wolf et al., 1992). 

Moreover, we could not observe the behavioral after-effect in the Y-mazes with the 

positive control (data not shown), yet operant activity was evident. However, in a previous 

study, freely walking single flies were conditioned to avoid one side of a small test chamber 

with heat (Wustmann et al., 1996). There might be two reasons why in the Y-mazes flies did 

not exhibit conditioning: blind flies might not able to orient themselves or the control of 

artificial stimulation by entering one of the Y-maze arms might be too difficult to learn. 

Successful operant conditioning needs in general less training than classical 

conditioning but the extinction of the instrumental response in the absence of stimulus is 

rapid. This does not imply an absence of memory, but an absence of display of the 

experience (Brembs, 2000; Mariath, 1985; Wolf & Heisenberg, 1991; Wolf et al., 1992). 

4.5 Evolutionary effects of dopamine in valence and 
locomotion/arousal 

Pleasantness or unpleasantness, according to Wundt (1896), is only one aspect of 

affect. According to Wundt’s tridimensional theory, all feelings, including those associated 

with sensory experiences, may be characterized by quantitative values on each of three 

bipolar dimensions: pleasantness-unpleasantness, strain-relaxation, and excitement-calm 

(Marks, 2011). 

Whereas we usually perceive valence and locomotion as two segregated bipolar 

dimensions, manipulation of dopaminergic neurons in fruit flies (Fuenzalida-Uribe & 

Campusano, 2018; Gomez-Marin et al., 2016; Kong et al., 2010; Lebestky et al., 2009; C. 

Liu et al., 2012; Q. Liu et al., 2012; Riemensperger et al., 2011, 2013; Sun et al., 2018; Van 

Swinderen & Andretic, 2011) and in mammals (Draper et al., 2007; Hikida et al., 2016; 

Kravitz et al., 2012; Kravitz & Kreitzer, 2012; Tran et al., 2002) reveal that these two 
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dimensions are to some extent correlated. Y-mazes experiments reveal locomotor effects of 

most of the dopaminergic populations (fig. S5), in contrast to other studies that only attribute 

locomotor effects to particular clusters (Berry et al., 2015; Fuenzalida-Uribe & Campusano, 

2018; Sun et al., 2018). We found a correlation that flies under unpleasant situations, 

increase locomotion and the opposite for pleasant ones, similar to what is observed in 

rodents (fig. S3)(Kravitz et al., 2012; Kravitz & Kreitzer, 2012).  

Dopamine projection to the EB regulates different locomotor traits. DopR1 effects 

seem to account for the increased arousal and depletion of dopamine decreases both 

locomotor activity and reactivity and increases sleep (Kong et al., 2010; Q. Liu et al., 2012; 

Riemensperger et al., 2011). A small population of R2/R4 ring neurons in the EB elicit an 

increase in walking probability whereas locomotor reactivity is influenced by several 

dopaminergic clusters but not the EB (Robie et al., 2017; Sun et al., 2018). In our study, the 

optogenetical activation of dopaminergic neurons targeting the EB showed changes in 

walking speed (fig. S5). Interestingly, DopR1 levels in the EB ring neurons affect 

centrophobism and exploration, altering place preference. Dopamine effects are difficult to 

reconcile with only one single behavioral dimension and thus,  a shared action selection is 

the most parsimonious explanation for the effects of dopamine (Kottler et al., 2019). 

The ancestral role of dopamine is the reaction to salient stimuli followed by the 

corresponding modulation of motor circuits. In the nematode Caenorhabditis elegans 

dopaminergic mechanosensory neurons are sensitive to food abundance and modulate the 

crawling speed and turning behavior, as well as affecting memory systems involved in food-

seeking behavior. Dopamine seems to be involved in reinforcement in the flatworm Dugesia 

japonica and in the cnidarian Hydra japonica, dopamine affects the extent of mouth opening 

in response to food stimuli (Barron et al., 2010). 

In animals with simpler brains, dopamine seem to signal more concrete rewards, 

often food resources. During foraging, the lack of information about the location of food 

resources might lead to the exploration of the environment. Reward or novelty, to represent 

information about resources, can be exploited by coincident networks to form association 

with other predicting stimuli or behavior and tune motor circuits to adopt optimal food search 

strategies. This modus operandi can be generalized with any other goal-directed behavior 

(Hills, 2006).  

All but the Joystick are spatial experiments where flies move freely, simulating 

foraging where instead of encountering food sources, the flies receive dopaminergic 

stimulation. Similar spatial experiments tracking fruit fly larvae for temperature and odor 

preference have found some general hallmarks of larval locomotion to find the preferred 
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places. When appetitive odor gradients decrease, larvae increase turning to avoid moving 

away from highly concentrated regions. When gradients increase, they keep a straight line to 

approach the higher concentrations. Similarly for temperatures, larvae regulate their turning 

rate and straight runs to occupy the prefered temperatures. For both C. elegans and D. 

melanogaster dopamine modulates turning behavior in response to a perceived reward, 

either in the form of food or drugs (Gomez-Marin et al., 2016; Hills, 2006; Shen et al., 2011). 

Whereas larvae seem to tweak its turning behavior for place preference, the adult fly might 

modify its speed accordingly. In this way, a relation of pleasure and aversion with 

decreased- and increased locomotion respectively, might be a valid standard approach to 

escape harming and dangerous regions and stay in sheltered and advantaged areas. 

Interestingly, a computational model was recently developed to simulate how the EB would 

exploit sensory inputs to orchestrate spatial navigation (Fiore et al., 2017). 

It is remarkable how dopamine´s ancestral role early in the history of metazoans has 

derived from concrete events to more processed representations of reward. Together with 

the detection of environmental stimuli to modulate motor commands, dopamine sets the 

appropriate arousal levels (Barron et al., 2010; Hills, 2006). Interestingly, TH-D1 and TH-D’ 

drivers (as well as TH-D4) promote wakefulness and this effect is mediated by an increase in 

arousal through PPL1-dFB (Q. Liu et al., 2012). In the Y-mazes we observed decreased 

speed when stimulating TH-D1 and TH-D4 whereas TH-D’ increased the speed (fig. S5). 

TH-G1 on the contrary did not exhibit any effect in sleep (Q. Liu et al., 2012)Liu 2012). The 

regulation of arousal states allows quick responses when these are needed and modulate 

attention according to the demands. Adjusting arousal states to affective states is necessary 

for proper response selection (Birman, 2005; Lebestky et al., 2009; Van Swinderen & 

Andretic, 2011). 

Although dopamine´s role is similar across phyla, it is unlikely to be a true homology. 

Molecular evidences suggest that higher order brain regions have evolved independently. 

Consequently, the mechanisms of reward in these regions should have evolved 

independently as well. In both cases the evolutionary process may have made use of a 

common molecular toolkit to lead to a convergent evolution of this general behavioral 

mechanism (Barron et al., 2010; Hills, 2006). 

4.6 Technical constraints and outlook 

4.6.1 Optogenetics 

By activating neurons artificially we overlook the complexity and relevance of 

neuronal dynamics. Under experimental light settings, depolarization via optogenetics might 

not be within the physiologically meaningful ranges. A tailor-made adjustment of stimulation 
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parameters for a given neuronal type to resemble its physiological state is time consuming 

and thus, barely done. Therefore, as in other studies our proof of concept was performed 

empirically by testing positive controls. However, while our positive controls targeted mostly 

neurons in the periphery, dopaminergic neurons lie within the brain, where the cuticle and 

brain tissue diffuse and scatter the light, reducing the light intensity. We believe that all these 

obstacles are inconspicuous since there is a broad range of stimulation protocols, with 

different effectors and stimulation patterns in the same neurons, that trigger the same result 

(Aso et al., 2010, 2012; Aso, Sitaraman, et al., 2014; Berry et al., 2015; Cande et al., 2018; 

Inagaki et al., 2014; Klapoetke et al., 2014; C. Liu et al., 2012; X. Liu et al., 2014; Ramirez et 

al., 2015; Redondo et al., 2014; Robie et al., 2017). 

From a theoretical perspective, activating neurons out of context of other neuronal 

activity might have no physiological meaning. On the other hand, activating a neuron that 

belongs to an auto-associative network might be followed by the activation of the rest due to 

the strong interconnections among them, thus, the stimulation would not be out of context 

(Allport, 1985). According to the hebbian rule, artificial activation of one single neuron 

repeatedly without any context, might decrease all its synaptic weights to a dysfunctional 

state. As an example, activation of the neurons encoding the US alone lead to memory 

extinction, an idea already proposed by Randich (Aso & Rubin, 2016; Baggett et al., 2018; 

Berry et al., 2015; Randich & Haggard, 1983; Schleyer et al., 2018; Vogt et al., 2015). 

Recent work on dopaminergic neurons focusing on the activity dynamics have 

produced interesting insights in how the preceding context influences action selection in the 

fruit fly (Cohn et al., 2015; Hige, Aso, Modi, et al., 2015; Hige, Aso, Rubin, et al., 2015). 

Imaging allows observation of dynamic brain activity while an individual is learning. Using the 

advantages of the transparent fish Danio rerio, Li (Li, 2014) recorded the whole brain activity 

during operant learning, allowing the anatomical distinction of sensory, relief prediction, 

RPE, action selection and motor neurons. 

4.6.2 Experimental design and analysis 

Looking retrospectively, there are a few changes that would have helped to improve 

this study. We would have tested the same positive control and a complete screen of all 

lines in the four paradigms. This would allow a better comparison across setups with more 

statistical power. We would have designed the experiments in blind with at least two 

experimenters in parallel for every screen, to avoid biases and have an approximate 

estimation of noise. We would have tested behavioral consistency over days to assess the 

origins of reinforcement variability: reinforcement might be specific for each individual or 

have probabilistic effects that are only observable at the population level. In addition, there 

have been some recent developments for more accurate neuronal targeting techniques 
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(Aso, Hattori, et al., 2014; Xie et al., 2018). Follow up experiments targeting subpopulations 

of our candidate lines might show a topographical organization of reinforcement.  

In the red lit T-maze we observed that flies choice was consistent at the population 

level, but not at the level of individual experiments. This could be due to a high decision 

variability in individual flies. Hence, activation of these neurons might change decisions 

probabilistically and thus only be observable at the population level in a similar way as it has 

been seen in descending neurons (Cande et al., 2018). 

A featureless Y-maze hinders a fly’s self-orientation unless it cumulatively tracks its 

movements. Flies have been shown to keep their orientation in working memory for around 

90 seconds (Seelig & Jayaraman, 2015; Wolff et al., 2015). When flies are genetically blind, 

the lack of spatial reference impairs the appearance of entries preference. If they could 

associate neuronal activation with arm location, this could be a valid reference, 

unfortunately, there is no evidence that flies can achieve this. Since our setup is spatial and 

is dependent on fly movement, this correlation could indicate that the occupancy rates might 

be due to effects in locomotion rather than in valence. Yoked experiments incontestably 

demonstrated that dopaminergic activation produces a locomotion phenotype. This 

emphasizes the relevance of the Joystick experiment where locomotion and valence can be 

disentangled. It might be interesting to test the candidate lines with and without norpAP24 to 

see if phenotype differences might be due to the presence of a CS due to the visual 

perception of the optogenetically stimulating light. 

In the Joystick, we often encountered unwanted biases due to inappropriate 

positioning of the flies on the platform. Hence, we subtracted the pretest PI values from the 

training PIs. Unfortunately, in the absence of any closed-loop stimuli, flies would spend long 

periods of time exploring with the platform on one side. This led to random strong pretest 

biases that were not averaged out even after testing several flies. For future experiments, to 

avoid big fly generated pretest biases one could perform experiments with longer pretest 

times.  

For the overall scores (fig. 12) we considered whitening (centering and normalizing 

the variance) all paradigms scores because in this way all paradigms would contribute 

equally in the overall phenotype. However, whitening involves centering the data, which 

would assume that our selected GAL4s contribute as much to approach as to avoidance, a 

strong assumption that is not necessarily true. In addition, since score means and variances 

were not drastically different across experiments, we opted for no data whitening. Another 

option was to normalize to the positive control, but since the positive controls seem to have 

similar effect size, we did not apply any normalization. 
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All in all, we took care in reproducing results; digitizing the data collection when 

possible to avoid bias that could occur in certain steps of the experiment. Moreover, we 

applied as much high throughput as we could to allow powerful statistics. Our analysis was 

very extensive taking in many points of view, biased to an explorative analysis but being 

conservative about the findings. The high amount of data generated during this thesis should 

allow to reanalyze data for new perspectives and follow up experiments. 

4.6.3 Outlook 

• Screen with sparse GAL4s from PPL1-dFB and PPM3. 

•  Classical learning experiments with the same driver lines. 

• Counterstaining and GRASP stainings of the candidate lines to identify their 

reciprocal connections. 

• Joystick experiment to test memory and habit formation in the interesting lines. 

• Calcium imaging of interesting regions while the fly is being reinforced for a certain 

behavior. 

• Do long term individual experiments to observe its own individual variability. 
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5 Conclusion 

The study revealed that dopamine functions as a reinforcer of behaviors in the fruit 

fly, supporting the idea that dopamine plays a conserved role.  

It was demonstrated that reinforcement and US signals are spatially segregated in 

different populations of dopaminergic neurons and therefore accurate terminology should be 

adopted by the scientific community.  

Although most of the dopaminergic neurons do not have a reinforcement effect, or if 

they do, it is context dependent, projections from two dopaminergic clusters (PPL1 and 

PPM3) to the central complex and lateral accessory lobe accounted for robust reinforcement 

across several testing conditions. The central complex and lateral accessory lobe are 

neuropils involved in sensory integration and action selection.  

Dopamine shows additional effects in other behavioral dimensions, in this case 

walking speed, which seem to be evolutionarily conserved. Therefore, we propose a model 

in which operant conditioning occurs in the central complex and lateral accessory lobe with 

the reinforcement of dopamine.  

This work has laid down valuable foundations for future investigations about the 

circuit level mechanisms of different operant learning processes. 
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7 Attachments 

7.1 Figures 

 

 

Figure S1. Conversion from Lux to mW/cm² in the Joystick (A) and T-maze with yellow light (B). The black 
line is the theoretical conversion as explained in the corresponding R script in the Methods section, and the blue 
line is the empirical calibration with the dots being each single measurement. 

 

Figure S2. Barplot of fictive lines obtained from the bootstrap. A: Boxplot for the total of 49 experiments with 
blind negative controls. B: Twelve samples with repetitions for 32 experiments (as many experiments and lines 
that were tested in the T-maze screen with yellow light). The range and the distribution of PIs is similar, slightly 
lower, to that obtained for the tested screens in the T-maze in Fig 7. 
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Figure S3. Combination of correlation pairs between speed, entries and occupancy rates for each 
screened line. Color bar at the top indicate the color code for the correlation score. For each correlation pair, the 
first column shows the adj. R² and the second column show the correlation between parameters. 

 



 
 
 
Attachments  66 

 

Figure S4. Yoked experiments between norpA+DDC>Chrimson and the negative control without GAL4. 
Barplots and error bars showing means and SEM respectively. A: Experiments with 
norpA+DDC(HL8)>Chrimson. When the light is on, flies walking speed decreases, independently of if they are 
yoked experiments or experiments with regular closed loop. B: This is not the case with the negative control 
NorpA;UAS-Chrimson where lights do not influence the average walking speed. 

 

Figure S5. Speed effects in the Y-maze. Ordered barplots by decreasing means with error bars depicting the 
standard error of the mean (SEM). Experimental lines in grey, in dark and light blue the genetic control with and 
without ATR supplementation, respectively. On the Y-axis the speed ratio and on the X-axis the fly lines tested. 
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7.2 Tables 

Product Company URL article 
number 

Cosine Corrector for SMA-
Connectorized Fiber 

Thorlabs https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_

id=3482&pn=CCS200 

CCSA1 

Wide range spectrometer 200-
1000nm 

Thorlabs https://www.thorlabs.com/thorproduct.cfm?partnumber=CCS
200#ad-image-0 

CCS200/M 

Coherent FieldMaxII-TO Laser Power 

Meter 

Edmund Optics https://www.edmundoptics.de/lasers/laser-

measurement/laser-power-meters/coherentreg-fieldmaxii-to-
laser-power-meter 

#88-411 

all trans-Retinal powder, >=98% Sigma http://www.sigmaaldrich.com/catalog/product/sigma/r2500?la

ng=de&region=DE 

R2500 

Osram Oslon SSL 145lm yellow 
10x10mm platine LEDs 

Osram https://www.leds.de/osram-oslon-ssl-smd-led-mit-10x10mm-
platine-145lm-gelb-69643.html 

69643 

Osram Oslon SSL 80lm blue 
10x10mm platine LEDs 

Osram https://www.leds.de/osram-oslon-ssl-smd-led-mit-10x10mm-
platine-80lm-blau-69635.html 

69635 

Philips Lumileds red LEDs Philips http://de.mouser.com/ProductDetail/Philips-Lumileds/LXM3-

PD01/?qs=sGAEpiMZZMu4Prknbu83y5qjVwwqxj2nEpXkn
zdNQZg%3d 

LXM3-PD01 

Digital Luxmeter 0-400000lx Voltcraft https://www.conrad.de/de/luxmeter-voltcraft-lx-1108-bis-

400000-lx-kalibriert-nach-werksstandard-ohne-zertifikat-
121885.html?WT.mc_id=xplosion&hk=ARX&insert=RA&ut
m_campaign=xplosiondetailansicht&utm_medium=cpc&utm

_source=xplosion&utm_term=121885 

LX-1108 

Camera Pointgrey Firefly MV Pointgrey https://www.ptgrey.com/firefly-mv-usb2-cameras FMVU-
03MTC-CS 

Voltcraft DC Power Supply 1,5 to 15V Voltcraft http://www.voltcraft.com/de/labor-netzgerate/  

Grass Instrument S44G Square 
Pulse Stimulator 

Grass Instrument   

Fishing Line Cormoran Seacor 

Schockleader 

http://www.cormoran.de/co/de/produkte/angelschn%C3%BC

re/seacor_shockleader/5,1,62,63,1,1__products-
model.htm?ovs_prdrows2=10&sid=btarcbwsn&stamp=1513

450435 

 

IR LED panel Luminous Film https://www.luminousfilm.com/custom-led-modules.htm  

Table S1. Parts list. In the first column are the product names from the components used for this study with the 
corresponding manufacturer (second column), website (third) and article number (fourth). 
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Fly line bloomington/flybaseID source 

w-;;TH-GAL4 
 

Berlin 

w-;TH-D1-G4/Cyo 
 

Tanimoto 

w-;;TH-D4-G4/TM6 
 

Tanimoto 

w-;TH-D'-G4/Cyo 
 

Tanimoto 

w-;TH-C1-G4/Cyo 
 

Tanimoto 

w-;;TH-C'-G4/TM6 
 

Tanimoto 

w-;;TH-F1-G4/TM6 
 

Tanimoto 

w-;;TH-F2-G4/TM6 
 

Tanimoto 

w-;;TH-F3-G4/TM6 
 

Tanimoto 

w-;;TH-G1-G4/TM6 
 

Tanimoto 

w-;it/Cyo;DDC-G4(HL9) 
 

Tanimoto 

w-;MZ840-G4 
 

Tanimoto 

w-;NP1568/Cyo 
 

Tanimoto 

w-;MZ19-G4 
 

Tanimoto 

w-;;DDC-G4(HL8) 
 

Tanimoto 

w-;sp/Cyo;NP0047 
 

Tanimoto 

w-;;NP6510-G4 
 

Tanimoto 

w-y-;NP5272-G4; 
 

Tanimoto 

w-;MB438B (split G4) 
 

Grunwald-Kadow 

w-;MB032B (split G4) 
 

Grunwald-Kadow 

w-;MB299B (split G4) 
 

Grunwald-Kadow 

w-;MB439B (split G4) 
 

Grunwald-Kadow 

w-;MB304B (split G4) 
 

Grunwald-Kadow 

w-;MB60B (split G4) 
 

Grunwald-Kadow 

w-;MB065B (split G4) 
 

Grunwald-Kadow 

w-;5HTR1B-G4 
 

Tanimoto 

w-;R58E02-G4 
 

Tanimoto 

w-;;c259-G4 
 

Tanimoto 

w-;MB312B (split G4) 
 

Grunwald-Kadow 

w-;MB301B (split G4) 
 

Grunwald-Kadow 

w-;MB058B (split G4) 
 

Grunwald-Kadow 

w-;MB109B (split G4) 
 

Grunwald-Kadow 

w-;MB315C (split G4) 
 

Grunwald-Kadow 

w-;MB056B (split G4) 
 

Grunwald-Kadow 

w-;MB025B (split G4) 
 

Grunwald-Kadow 

w-;;Gr66a-G4/TM6 
 

bloomington 

w-;Gr28bd-G4/Cyo;Gr66a-G4/TM3 
 

bloomington 

w-;TrpA1-G4 
 

bloomington 

w-;TH-G80 
 

Tanimoto 

w-;MB247-G80/Cyo 
 

Tanimoto 

w-;;Cha-G80 
 

Tanimoto 

w-;Cha-G80 
 

Tanimoto 
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norpAP24 
 

Heisenberg 

norpAP24;20xUAS-Chrimson 
 

crossed stock 

w-;20xUAS-Chrimson 
 

bloomington 

w-;TH-C1/cyo; TH-F1/tm3 
 

crossed stock 

w-;TH-G80;TH-G4 
 

crossed stock 

w-20xUAS-GtACR1(attP2) 2026 bloomington 

w-;;20xUAS-GtACR2(attP2)/TM3(Sb) 
 

bloomington 

w-;;20xUAS6xGFP 52261 bloomington 

w-;Gr28bd-G4;TrpA1-G4 
 

crossed stock 

Table S2. Fly lines deployed in this study. The first column depicts all the fly names with the genetic 
manipulations for the three first chromosomes. w-: white mutation. The second column contains the ID number for 
the flies that were ordered in Bloomington (https://bdsc.indiana.edu/) in the third column. 

 
Comparison Adj. R²  R P-value 

red- vs. yellow lit T-maze -0.05  -0.11 0.77 

Y-mazes vs. red lit T-maze -0.05  -0.08 0.66 

Joystick vs. yellow lit T-
maze 

-0.003  -0.26 0.35 

Y-mazes vs. Joystick -0.03  0.08 0.54 

Y-mazes vs. yellow lit T-
maze 

-0.04  -0.07 0.73 

Joystick vs. red lit T-maze 0.29  0.65 0.02 

Table S3. Correlation statistics from the operant screens. The first column indicates the two operant screens 
that were used to correlate the scores from the respective driver lines tested. The adj. R²: (adjusted R²) close to 
zero indicate no correlation whereas the closer to one, the higher the correlation is, in which case the slope is 
given in the second column by R: (correlation between both variables). The P-values where all not significant 
after the Bonferroni correction. 

  

https://bdsc.indiana.edu/
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